

HDD Design Report Wickecheoke Creek HDD Crossing

PennEast Pipeline Project

July 22, 2019

PennEast Pipeline Project 353754-MM-EN-CO-102 RevA

51 H I

Mott MacDonald 111 Wood Avenue South Iselin NJ 08830-4112 United States of America

T +1 (800) 832 3272 F +1 (973) 376 1072 mottmac.com

Certificate of Authorization 24GA28016600

PennEast Pipeline Project 835 Knitting Mills Way Wyomissing, PA 19610 610-373-7999

HDD Design Report Wickecheoke Creek HDD Crossing

J. Markey Mark

PennEast Pipeline Project

July 22, 2019

Michael A. Wilcox Professional Engineer

N.J. LIC. NO. 24GE04673700

PennEast Pipeline Project 353754-MM-EN-CO-102 RevA

Issue and revision record

Revision	Date	Originator	Checker	Approver	Description
Α	07/22/2019	M. Lockwood	G. Duyvestyn	M. Wilcox	Issued for NJDEP

Document reference: 353754-MM-EN-CO-102 RevA

Information class: Standard

This document is issued for the party which commissioned it and for specific purposes connected with the above-captioned project only. It should not be relied upon by any other party or used for any other purpose.

Contents

1	Intro	duction	1
	1.1	Crossing Description	1
2	Antic	cipated Geotechnical Conditions	2
	2.1	Subsurface Investigations	2
	2.2	Geotechnical Observations	2
		2.2.1 Geotechnical Observations North of Wickecheoke Creek	2
		2.2.2 Geotechnical Observations at Wickecheoke Creek	3
		2.2.3 Geotechnical Observations South of Wickecheoke Creek and Lower Road	r Creel 4
3	Wic	kecheoke Creek Crossing	6
	3.1	HDD Bore Geometry and Alignment Considerations	6
		3.1.1 Entry and Exit Angles	6
		3.1.2 Vertical and Horizontal Curvature	6
		3.1.3 HDD Installation Depth	6
		3.1.4 Bore Diameter	7
	3.2	Line and Grade Accuracy	7
	3.3	Required Workspace and Staging Areas	8
	3.4	Drilling Fluid Make-Up Water and Source	8
	3.5 3.6	Disposal of Excess Drilling Fluid and Processed Spoils Schedule	9
4	HDI	D Engineering Evaluation	10
	4.1	Pipeline Properties	10
	4.1	Design and Minimum Allowable Bend Radii	10
	4.3	Operating Stress Evaluation	11
	4.4	HDD Installation Load and Stress Evaluation	11
	4.5	Hydraulic Fracture Evaluation	13
5	HDI	D Risk Discussions	17
	5.1	HDD Risk Characterization	17
	5.2	HDD Industry – State of Practice	17
	5.3	Geotechnical Risk Discussions	18
	5.4	Crossing-Specific Risk Discussions	18
6	Sur	nmary	20

7 Limitations	21
Appendix A	
Appendix B	
Appendix C	
Appendix D	
Tables	
Table 1: Estimated schedule duration for the HDD crossing	9
Table 2: Pipeline properties and input parameters for the HDD evaluation	10
Table 3: Summary of operating stress evaluation	11
Table 4: Summary of anticipated pullback loads	12
Table 5: Summary of installation stress evaluation	13
Table 6: Assumptions used for hydraulic fracture evaluation	14
Table 7: Material property assumptions for the medium stiff clay soils	14
Table 8: Material property assumptions for the decomposed bedrock	14
Table 9: Material property assumptions for the siltstone/sandstone bedrock	15
Table 10: State of the HDD Industry	17
Figures	
Figure 1: Calculated, recommended, and allowable drilling fluid pressures	16

1 Introduction

Mott MacDonald has prepared this HDD design report at the request of PennEast Pipeline Company, LLC (PennEast), for their proposed HDD crossing of the Wickecheoke Creek, part of the larger PennEast Pipeline Project. The proposed Project consists of 115 miles of 36-inch diameter (NPS 36) high pressure, natural gas pipeline from Luzerne County, Pennsylvania to Mercer County, New Jersey.

1

Specifically, this report summarizes Mott MacDonald's evaluation of the design elements and risk discussions (as determined in the information provided) and presents recommendations for enhancing the success of the Wickecheoke Creek HDD crossing.

The drawings and design elements have been prepared and evaluated with the aid of a geotechnical subsurface investigation performed by Mott MacDonald, laboratory assessment and testing analysis completed by Craig Test Boring Co., Inc (CTB). Brief discussions on the geotechnical conditions summarized in this design report have been extracted from the information presented in the site-specific Geotechnical Data Report (GDR). Greater detail on these conditions can be found in the site-specific GDR.

1.1 Crossing Description

The proposed plan and profile drawing is provided in Appendix A. The horizontal length of the proposed HDD is approximately 3,309 feet (with a true length of approximately 3,363 feet). An elevation difference of approximately 39 feet exists between the HDD entry and exit locations, with the HDD entry location at the lower elevation. The HDD entry location is located on the south side of the crossing.

The pipe staging area for the drag section is located on the north side of the crossing. It is envisioned that, due to limited workspace, the pipe string will be fabricated into two sections prior to pullback operations. The HDD Contractor must follow good HDD construction practices and limit the stoppage time for intermediate welding during pullback operations.

2 Anticipated Geotechnical Conditions

The following discussions on the anticipated geotechnical conditions are based on the information provided by the site-specific geotechnical investigation program. Borehole logs for completed borings to support the design of the crossings by HDD methods are provided in Appendix B. The objective of these discussions is to provide an explanation of the various construction risks identified in subsequent sections related to the geotechnical conditions.

2.1 Subsurface Investigations

A total of five (5) borings, designated as B-54, B-55, B-56, B-57 and B-WICK-1 were completed as part of the geotechnical investigation program to support the evaluation and design of the Wickecheoke Creek crossing. Borehole B-54 was drilled south of Rosemont Ringoes Road, approximately 199 feet south of the north HDD exit location to a depth of 100 feet (Elev. 203 feet) below ground surface. Borehole B-55 was drilled approximately 711 feet north of the edge of Wickecheoke Creek to a depth of 220 feet (Elev. 41) below ground surface. Borehole B-56 was drilled between Wickecheoke Creek and Lower Creek Road, approximately 43 feet south of the edge of Wickecheoke Creek to a depth of 160 feet (Elev. 6 feet) below ground surface. Borehole B-57 was drilled approximately 1,104 feet north of the HDD entry location to a depth of 150 feet (Eiev. 54 feet) below ground surface. Borehole B-WICK-1 was drilled approximately 434 feet north of the HDD entry location to a depth of 100 feet (Elev. 147 feet) below ground surface.

A summary of the known subsurface materials encountered at the site is provided below.

2.2 Geotechnical Observations

2.2.1 Geotechnical Observations North of Wickecheoke Creek

The HDD installation on the north side of Wickecheoke Creek is anticipated to encounter soils overlying bedrock materials. Based on Boring B-54, the site soils are anticipated to include the following:

- Medium stiff silt with trace clay from the ground surface to a depth of 3.5 feet (from Elev. 303 to 299.5 feet).
- Medium dense to dense silty sand with trace fine gravel to a depth of 13.5 feet (to Elev. 289.5 feet).
- Dense to very dense decomposed rock with silt to a depth of 30 feet (to Elev. 273 feet).
- Highly weathered to slightly weathered, very weak to medium strong siltstone to a depth of 100 feet (to Elev. 203 feet). Rock quality designation (RQD) values ranged between 0 and 70 percent (avg. 35 percent). Recovery values ranged between 25 and 100 percent (avg. 92 percent).

Based on Boring B-55, the geotechnical materials are anticipated to include the following:

- Very stiff silt with coarse to fine sand from the ground surface to a depth of 13.5 feet (from Elev. 261 to 247.5 feet).
- Very dense decomposed rack fragments to a depth of 16 feet (to Elev. 245 feet).
- Highly weathered to slightly weathered, weak to medium strong siltstone to a depth of 65 feet (to Elev. 196 feet). RQD values ranged between 0 and 88 percent (avg. 44 percent). Recovery values ranged between 83 to 100 percent (avg. 96 percent).
- Slightly weathered to fresh, medium strong shale to a depth of 75 feet (to Elev. 186 feet). RQD values ranged between 53 and 77 percent (avg. 65 percent). Recovery values ranged between 90 and 100 percent (avg. 95 percent).
- Slightly weathered, medium strong sandstone to a depth of 80 feet (to Elev. 181 feet). RQD value of 77 percent and recovery value of 100 percent.

- Slightly weathered, medium strong to strong siltstone to a depth of 105 feet (to Elev. 156 feet). RQD values ranged between 53 and 88 percent (avg. 70 percent). Recovery values ranged between 90 and 100 percent (avg. 98 percent).
- Slightly weathered to fresh, strong to very strong argillite to a depth of 120 feet (to Elev. 141 feet). RQD values ranged between 82 to 88 percent (avg. 86 percent). Recovery values ranged between 97 to 100 percent (avg. 98 percent).
- Moderately weathered to fresh, medium strong to strong siltstone to a depth of 220 feet (to Elev. 41 feet). RQD values ranged between 42 and 97 percent (avg. 77 percent). Recovery values ranged between 87 to 100 percent (avg. 98 percent).

2.2.2 Geotechnical Observations at Wickecheoke Creek

The HDD installation beneath Wickecheoke Creek is anticipated to encounter soils overlying bedrock materials. Based on Boring B-56, the geotechnical materials are anticipated to include the following:

- Stiff to very stiff silt with decomposed rock fragments from the ground surface to a depth of 13.5 feet (from Elev. 166 to 152.5 feet).
- Very dense decomposed rock fragments to a depth of 17 feet (to Elev. 149 feet).
- Highly weathered to moderately weathered, very weak to medium strong siltstone to a depth of 22.5 feet (to Elev. 143.5 feet). RQD values ranged between 34 to 37 percent (avg. 36 percent).
 Recovery values ranged between 93 to 100 percent (avg. 97 percent).
- Moderately weathered, weak to medium strong sandstone to a depth of 33.2 (to Elev. 132.8 feet)
 RQD values ranged between 7 to 37 percent (avg. 21 percent). Recovery values ranged between 93 to 98 percent (avg. 96 percent).
- Moderately weathered, weak to medium strong siltstone to a depth of 45 feet (to Elev. 121 feet). RQD values ranged between 53 to 63 percent (avg. 58 percent) with recovery values of 100 percent. A layer of moderately weathered, weak to medium strong sandstone exists within the siltstone rock mass between a depth of 42.7 to 44.1 feet (from Elev. 123.3 to 121.9 feet).
- Moderately weathered, weak to medium strong sandstone to a depth of 52 feet (to Elev. 114 feet).
 RQD value of 75 percent and recovery value of 100 percent.
- Highly weathered to slightly weathered, weak to medium strong mudstone to a depth of 63 feet (to Elev. 103 feet). RQD values ranged between 40 and 80 percent (avg. 63 percent). Recovery values ranged between 60 and 97 percent (avg. 84 percent).
- Moderately weathered, weak to medium strong siltstone to a depth of 70 feet (to Elev. 96 feet). RQD value of 43 percent and recovery value of 100 percent. A layer of moderately weathered, medium strong sandstone exists within the siltstone rock mass between a depth of 67.1 to 68.7 feet (from Elev. 98.9 to 96 feet).
- Moderately weathered, weak to medium strong mudstone to a depth of 80 feet (to Elev. 86 feet). RQD values ranged between 62 and 65 percent (avg. 64 percent) with recovery values of 100 percent.
- Moderately weathered, weak to medium strong siltstone to a depth of 90 feet (to Elev. 76 feet). RQD values ranged between 51 and 52 percent (avg. 51.5 percent) with recovery values of 100 percent.
- Slightly weathered, medium strong mudstone to a depth of 96.5 feet (to Elev. 69.5 feet). RQD value of 89 percent and recovery value of 100 percent.
- Small layer of slightly weathered, medium strong siltstone to a depth of 97.9 feet (to Elev. 68.1 feet).
- Slightly weathered to fresh, medium strong to very strong sandstone to a depth of 126 feet (to Elev. 40 feet). RQD values ranged between 74 and 100 percent (avg. 93 percent). Recovery values ranged between 98 and 100 percent (avg. 99.7 percent).
- Moderately weathered to fresh, medium strong to strong mudstone to a depth of 131.7 feet (to Elev. 34.3 feet). RQD value of 58 percent and recovery value of 95 percent.

Mott MacDonald | HDD Design Report Wickecheoke Creek HDD Crossing PennEast Pipeline Project

- Fresh, strong sandstone to a depth of 140 feet (to Elev. 26 feet). RQD values ranged between 57 and 93 percent (avg. 75 percent) with recovery values of 100 percent.
- Fresh, strong siltstone to a depth of 160 feet (to Elev. 6 feet). RQD values ranged between 50 and 100 percent (avg. 81 percent). Recovery values ranged between 98 and 100 percent (avg. 99.5 percent).

2.2.3 Geotechnical Observations South of Wickecheoke Creek and Lower Creek Road

The HDD installation beneath Wickecheoke Creek is anticipated to encounter soils overlying bedrock materials. Based on Boring B-57, the geotechnical materials are anticipated to include the following:

- Soft silty clay with trace fine sand from the ground surface to a depth of 3.5 feet (from Elev. 204 to 200.5 feet).
- Very stiff clayey silt with gravel and sand to a depth of 8.5 feet (to Elev. 195.5 feet).
- Medium dense gravel with clay and silt to a depth of 13.5 feet (to Elev. 190.5 feet).
- Very dense decomposed rock fragments with clay and silt to a depth of 20 feet (to Elev. 184 feet).
- Slightly weathered to fresh, weak to strong siltstone to a depth of 50 feet (to Elev. 154 feet). RQD values ranged between 17 to 83 percent (avg. 49 percent). Recovery values ranged between 50 and 100 percent (avg. 91 percent).
- Moderately weathered to fresh, strong sandstone to a depth of 56.8 feet (to Elev. 147.2 feet). RQD value of 85 percent and recovery value of 50 percent.
- Slightly weathered to fresh, medium strong to strong siltstone to a depth of 80 feet (to Elev. 124 feet). RQD values ranged between 50 and 95 percent (avg. 75 percent). Recovery values ranged between 90 and 100 percent (avg. 97 percent).
- Slightly weathered to fresh, medium strong to very strong sandstone to a depth of 150 feet (to Elev. 54 feet). RQD values ranged between 28 and 100 percent (avg. 79 percent). Recovery values ranged between 87 and 100 percent (avg. 97 percent).

Based on Boring B-WICK-1, the geotechnical materials are anticipated to include the following:

- Soft silty clay with trace fine sand from the ground surface to a depth of 3.5 feet (from Elev. 247 to 243.5 feet).
- Very dense decomposed rock fragments with gravel and sand to a depth of 12 feet (to Elev. 235 feet).
- Slightly weathered to fresh, strong to very strong sandstone to a depth of 27.4 feet (to Elev. 219.6 feet). RQD values ranged between 40 and 93 percent (avg. 69 percent). Recovery values ranged between 80 and 100 percent (avg. 94 percent).
- Slightly weathered to fresh, medium strong to strong siltstone to a depth of 40 feet (to Elev. 207 feet). RQD values ranged between 65 to 90 percent (avg. 76 percent). Recovery values ranged between 95 and 98 percent (avg. 97 percent).
- Fresh, very strong argillite to a depth of 50 feet (to Elev. 197 feet). RQD values ranged between 85 and 88 percent (avg. 87 percent) with recovery values of 100 percent.
- Moderately weathered to slightly weathered, medium strong to strong siltstone to a depth of 65 feet (to Elev. 182 feet). RQD values ranged between 47 and 73 percent (avg. 56 percent). Recovery values ranged between 93 and 98 percent (avg. 96 percent).
- Fresh, very strong argillite to a depth of 70 feet (to Elev. 177 feet). RQD value of 80 percent and recovery value of 100 percent.
- Fresh, strong to very strong sandstone to a depth of 91 feet (to Elev. 156 feet). RQD values ranged between 95 and 98 percent (avg. 97 percent). Recovery values ranged between 98 and 100 percent (avg. 99 percent).

Slightly weathered, medium strong to strong siltstone to a depth of 100 (to Elev. 147 feet). RQD values ranged between 18 and 72 percent (avg. 45 percent). Recovery values ranged between 45 and 95 percent (avg. 70 percent).

Along the proposed HDD alignment, the bedrock throughout the Wickecheoke Creek installation appears to be of very poor to excellent quality depending on the strata, with an overall fair quality of the rock mass. The core recovery values for all strata ranged from 25 to 100 percent with an average value of 96 percent.

3 Wickecheoke Creek Crossing

3.1 HDD Bore Geometry and Alignment Considerations

3.1.1 Entry and Exit Angles

HDD operations are typically designed with entry angles between 8° and 16°, although steeper entry angles have been used where insufficient setback distance or steeply sloping ground exists for a given alignment. Exit angles are typically lower than the entry angle, as consideration must be given to the pipe diameter, the equipment necessary to transition the pipe into the bore, and the stresses induced as the pipe is forced over the break-over location as it enters the HDD bore.

For the Wickecheoke Creek installation, the entry and exit angles have been set at 14° and 12°, respectively, relative to the horizontal.

3.1.2 Vertical and Horizontal Curvature

Vertical curvature is inherent to all HDD installations. The need for horizontal curvature is dependent on the restrictions specific to a single crossing. While horizontal curvature is feasible, it greatly increases the complexity of the scope of design and construction when required. It also increases the stress, and therefore the risk, to the pipe and the overall installation. Steering in both planes is not a standard industry practice and can lead to complex radii and a reduction in the overall bending radius that the pipe will be subjected to. A straight alignment has been selected for the crossing eliminating the risks associated with horizontal curvature.

The proposed vertical curve radius of 3,600 feet shown in Appendix A is consistent with the HDD industry standard of 1,200 times the 36-inch outer diameter of the pipe. This radius has been taken as the design radius for the crossing.

3.1.3 HDD Installation Depth

The depth of cover for a given HDD installation is dependent on several factors, including but not limited to:

- The anticipated geotechnical materials
- The presence of preferential flow pathways
- The design bending radius
- The presence of existing utilities and/or structures
- Installation length

Of these, the most important factors are the properties of the overlying geotechnical material, and the resistance these materials provide against the required installation-induced bore fluid pressures necessary to remove the cuttings.

Another important factor in establishing the proper installation depth is the ability to maintain bore stability over the course of the installation. This is accomplished by placing the HDD bore through geotechnical materials that are favorable to HDD operations. For this installation, the HDD is anticipated to be within the siltstone and sandstone bedrock for the majority of the installation.

The proposed HDD installation crosses beneath several surface features including waterbodies and roads. From a south to north orientation, the following minimum depths of cover are noted:

- Lower Creek Road: Approximately 131 feet.
- Wickecheoke Creek: Approximately 110 feet.
- Waterbody 031219_LD_1002_P_MI: Approximately 103 feet.

Waterbody 031219 LD 1003 I MI: Approximately 86 feet.

3.1.4 Bore Diameter

The diameter of the HDD bore must be greater than the outer diameter of the pipe. This larger bore is required to facilitate the flow of drilling fluids around the pipe, reduce the frictional force acting on the pipe as it is installed, and to help the pipe negotiate curves in the alignment.

The acceptable industry standard for the final bore diameter is generally 1.5 times larger than the pipe outer diameter for small diameter pipe (less than 24 inches), and 12 inches larger than the outer diameter for larger diameter installations. However, the actual diameter of the bore is typically dependent upon the geotechnical conditions and the required bore geometry. Hence, it may be necessary to increase the diameter beyond the typical industry standard to facilitate the installation process. To increase the likelihood of success, it is highly recommended that the final bore diameter be selected by the HDD Contractor, based on their experiences with similar geotechnical materials, pipe diameters, and installation lengths, and to suit their means and methods.

Based on typical HDD industry standards, the anticipated bore diameter for the NPS 36 pipe is 48 inches.

3.2 Line and Grade Accuracy

The horizontal and vertical position of the bottom hole assembly is tracked using a downhole survey tool, consisting of a probe that utilizes Earth's gravitational and magnetic fields. These tools have a nominal accuracy of approximately:

Inclination: ± 0.1°
Azimuth: ± 0.3° to 0.5°
Tool-face: ± 0.1°

The accuracy of these tools can be enhanced by using a surface wire/coil loop established over the alignment. Inducing an electrical current through the wire creates a localized magnetic field from which the downhole probe can determine its location relative to the surveyed coil and magnetic field.

These enhanced guidance systems include TruTracker and ParaTrack systems. The TruTracker guidance system relies on a closed loop surveyed wire layout that is at least as wide as the depth of the HDD installation. For highways and water body crossings, individual coils are often established on each side of the crossing feature. A ParaTrack system relies on a single wire placed directly over the HDD alignment centerline, with a return wire offset several hundred feet from the alignment to form a closed loop system. When augmented with a surface coil, the lateral and vertical position of the survey probe is plus or minus two (2) percent of the depth separating the location of the probe and the surface coil. Greater inaccuracies may occur if site constraints prevent the use of an energized wire grid on the ground surface.

Fiber-optic gyroscopic guidance systems have also been used to track downhole tooling. This type of system relies on an inertial measurement unit to calculate the position of the bottom hole assembly and is not affected by magnetic interference. This tool is very effective in accurately locating the surface tool position during pilot bore drilling.

With these methods, survey readings can be taken at the end of each drilled joint or every half of a joint. Stand-alone surveys can be completed where the surface coils are established. Here the inaccuracy is a function of the specific depth of cover at the location in question. Where the surface coils cannot be established, such as across a highway or beneath a river, the position of the bottom hole assembly is determined based on the calculated position of the previous measurement. In this manner, any inaccuracy built into the measured position is additive as the drill length increases. However, as the bottom hole assembly re-encounters the surface coil on the opposite side of the highway or river, the inaccuracy is once again a function of a stand-alone measurement based on the specific depth of cover at the location in question.

Mott MacDonald recommends the use of a ParaTrack system. The HDD Contractor must assure adequate coverage of surveying with no gaps in coverage while using a surface coil and/or beacon.

3.3 Required Workspace and Staging Areas

For the proposed HDD installation, the staging area for the HDD entry location on the south side of the crossing has been established at 250 feet by 250 feet, and the staging area for the HDD exit location on the north side of the crossing has been established at 250 feet by 255 feet. This area is required to stage equipment necessary for the installation, which includes the drill rig, stacks of drill pipe, operator control cabin, tooling trailers, crane or excavator, separation plant, mud tanks, mud pumps, Baker storage tanks, office trailer, and support trailers.

In addition to the entry and exit staging areas, a staging area of 75 feet wide by the length of the pipe string (greater width is required where multiple drag sections are required as is the case for this installation) is also required for welding sections of the pipe string, and preferably the entire pipe string when possible, prior to installation. The proposed staging area for the drag section is located on the north side of the crossing, as insufficient workspace area was able to be attained on the south side of the crossing for pipe stringing and pullback activities. The available length of the staging area is approximately 2,600 feet north of Rosemont Ringoes Road, resulting in the need for fabricating the pipe string into a two (2) drag sections and the need for one (1) intermediate weld during pullback operations. The HDD Contractor will need to minimize delays during intermediate welding operations. During pullback operations, Rosemont Ringoes Road will need to be shutdown to pull the fabricated pipe to the HDD exit location.

The temporary work space established for the Wickecheoke Creek installation is sufficient for HDD operations.

3.4 Drilling Fluid Make-Up Water and Source

HDD operations require a continuous source of water to support construction activities. It is typical for contractors to make use of an onsite source, or have water delivered from a nearby source. In each case, the contractor should verify that the water source is suitable for HDD operations, or treat it (filtration, pH, etc.) so that it is suitable for use.

For the proposed crossing, the contractor will be required to haul and store water on site for construction activities. Estimates of fresh water requirements is a function of maintaining drilling fluid flow within the bore during the HDD installation, and water requirements to adjust for hole volume, minor losses to processed spoils and surrounding geotechnical materials, wash water, etc. Daily fresh water usage typically ranges from 2,650 to 5,300 ft³, depending on the process and storage capabilities of the Contractor.

Total fresh water requirements can be estimated as a function of the final reamed diameter. Factors of between two (2) and seven (7) times the final reamed diameter have been used to estimate the fresh water requirements necessary to support HDD operations. Based on a factor of four (4), the estimated total water usage (assuming no loss in circulation) is approximately 1,523,095 gallons (203,608 ft³). This volume estimate assumes good HDD industry practices and procedures are followed, and that no significant fluid losses occur during the installation. This volume also includes fresh water required for buoyancy control during the HDD installation (estimated at approximately 151,125 gallons).

3.5 Disposal of Excess Drilling Fluid and Processed Spoils

Excess drilling fluids and processed spoils will need to be disposed of during the installation. The direct area around the HDD is not expected to be suitable for permanent disposal of drilling fluid or processed solids (based on local, state, and federal regulations). Local, temporary storage will be required, either in above ground tanks or a lined borrow pit. A suitable offsite disposal site should be located for disposal of drilling fluid and processed spoil per the local, state, and federal guidelines.

Disposal volumes of excess drilling fluid and spoil are estimated at approximately 1,188,560 gallons (5,885 yd³) and 60,365 ft³ (2,236 yd³) respectively. During pullback operations, the estimated displaced fluid volume is approximately 167,975 gallons (832 yd³).

3.6 Schedule

The duration of the HDD installation is conservatively estimated to take a total of 110 shifts, regardless of whether 24-hour operations are conducted to complete the crossing, as shown in Table 1 below. This estimate is based on 12-hour shifts. No provisions have been included for pad construction and erection and tear-down of a shelter (if used) in these durations. In addition, no contingency has been provided for adverse weather or more difficult drilling conditions.

Table 1: Estimated schedule duration for the HDD crossing

Activity	Duration (Shifts)	
Mobilization	3	
Rig Up / Equipment Setup	5	
Pilot Bore Drilling	20	
Reaming	74	
Swab Pass	A 1 .	
Product Pipe Pullback	2	
Rig Down and Demobilization	5	
Total Number of Shifts	110	

4 HDD Engineering Evaluation

4.1 Pipeline Properties

The pipeline properties used for the evaluation of the Wickecheoke Creek HDD Crossing have been provided by PennEast, and are summarized in Table 2 below:

Table 2: Pipeline properties and input parameters for the HDD evaluation

Evaluation Parameter	Value
Pipe Size	NPS 36
Outer Diameter	36 in
Wall Thickness	0.762 in
Pipe Grade	X-70
Maximum Allowable Operating Pressure	1,480 psig
Minimum Operating Temperature	45°F
Maximum Operating Temperature	120°F
Poisson's Ratio	0.30
Elastic Modulus	29,200,000 psi
Coefficient of Thermal Expansion	6.5 x 10 ⁻⁶ in/in/°F
Design Factor	0.5

4.2 Design and Minimum Allowable Bend Radii

The minimum ultimate bend radius is a function of the maximum allowable operating pressure, pipe diameter, wall thickness, design factor, location factor, and specified minimum yield strength of the pipe material. Determination of the ultimate minimum bend radius is based on determining the hoop and longitudinal stresses under operating pressure, and then determining the available magnitude of stress that the product pipe can accommodate in an alignment bend/curve.

The minimum ultimate bending radius evaluation is completed in accordance with:

- ASCE Manual of Practice No. 108 Pipeline Design for Installation by Horizontal Directional Drilling
- 49 CFR 192 Transportation of Natural and Other Gas by Pipeline- Minimum Federal Safety Standards
- ASME B31.8 Gas Transmission Distribution and Piping Systems
- ASME B31.4 Pipeline Transportation Systems for Liquid Hydrocarbons and Other Liquids

Using the pipe properties presented in Table 2, the ultimate minimum bending radius is calculated for the pipe and pressure conditions. This radius represents the lowest radius that could be drilled without overstressing the pipe for the identified pipe properties and in-service loading. Based on the pipe properties provided in Table 2 and a design factor of 0.5, the ultimate minimum bending radius is approximately 2,500 feet.

The minimum allowable bending radius is the minimum radius that the HDD contractor is permitted to drill during their pilot bore to maintain the design alignment and profile. This radius is established above the calculated ultimate minimum bending radius to ensure that the pipe is not overstressed during the HDD

installation process, and sufficiently below the design radius provided on the Contract drawings. Based on an ultimate minimum bending radius of 2,500 feet, the minimum allowable bending radius has been established at 2,600 feet.

The design radius is the radius selected to develop the HDD plan and profile. This radius is greater than the minimum allowable bending radius given to the HDD contractor to complete the construction of the crossing. The design bending radius for developing the Wickecheoke Creek profile has been established at 3,600 feet, which is consistent with the HDD industry standard of 1,200 times the outer diameter of the NPS 36 pipe.

4.3 Operating Stress Evaluation

Evaluation of operating loads for pipelines installed by HDD methods is generally similar to the evaluation for pipelines installed by open-cut construction methods. The main difference between the two scenarios is that elastic bending (as a result of the curved HDD alignment profile) must be considered for the HDD installation. Elastic bending stresses occur as the pipe takes on the final shape of the HDD bore. As a rule, the bending stresses induced are not a critical stress condition on their own but must be considered in a combined loading condition with other stress conditions such as hoop stress and longitudinal stress.

An operating stress evaluation has been completed in compliance with the ASME B31.4 and B31.8. The input parameters for this analysis are provided in Table 2. The results of the evaluation are provided in Table 3 below and are based on the minimum allowable bending radius of 2,600 feet (based on the allowable bend radius provided to the HDD contractor). As observed in Table 3, the operating stresses are below the maximum allowable limits. Hence, the pipe properties (wall thickness and grade) are sufficient to meet the operating stresses within the HDD alignment.

Table 3: Summary of operating stress evaluation

	Estimated Stress	Percent of SMYS ⁽¹⁾	Maximum Allowable Percent of SMYS ⁽¹⁾
Stress Condition	(psi)	(%)	(%)
Longitudinal Bending Stress	16,846	24.1	
Hoop Stress	34,961	49.9	50 ⁽²⁾
Longitudinal Tensile Stress from Hoop Stress	10,488	15.0	
Longitudinal Stress from Thermal Expansion	-14,235	20.3	90(3)
Net Longitudinal Stress (Compression Side of the Curve)	-20,593	29.4	90 ⁽⁴⁾
Net Longitudinal Stress (Tension Side of the Curve)	13,099	18.7	90 ⁽⁴⁾
Maximum Shear Stress	27,777	39.7	45
Combined Biaxial Stress	55,554	79.4	90(4)

Notes: 1 Specified Minimum Yield Stress

4.4 HDD Installation Load and Stress Evaluation

A total of six (6) pull load evaluations were completed for the HDD bore profile. These calculations are based on the installation load calculation method provided in American Society of Civil Engineer MREP 108 (2015), and the Pipeline Research Committee at the American Gas Association publication, entitled "Installation of Pipelines by Horizontal Directional Drilling, an Engineering Guide."

² Limited by design factor

³ Limited by ASME B31.4

⁴ Limited by ASME B31.8

The pull load evaluation includes assumptions for final bore diameter, soil, pipe roller friction coefficients, drilling fluid yield point, plastic viscosity, drilling fluid pumping rate, and other installation parameters such as buoyancy control measures (i.e. whether or not the pipe will be filled with water during pullback operations). In addition, the evaluation accounts for the capstan effect induced by curves in the alignment, fluidic drag, buoyancy of the pipe string within the bore, and the weight of the tail string at start-up and throughout the installation process.

Six (6) installation evaluations were completed to investigate the effects of varying mud weights and buoyancy control measures during the installation of the pipe. The six (6) scenarios were:

0	Case 1:	Drilling Fluid Weight Pipe	10 ppg (Specific Gravity of 1.20) No buoyancy control (pipe empty of water)
•	Case 2:	Drilling Fluid Weight Pipe	10 ppg (Specific Gravity of 1.20) Full buoyancy control (pipe full of water)
8	Case 3:	Drilling Fluid Weight Pipe	11 ppg (Specific Gravity of 1.32) No buoyancy control (pipe empty of water)
•	Case 4:	Drilling Fluid Weight Pipe	11 ppg (Specific Gravity of 1.32) Full buoyancy control (pipe full of water)
•	Case 5:	Drilling Fluid Weight Pipe	12 ppg (Specific Gravity of 1.44) No buoyancy control (pipe empty of water)
•	Case 6:	Drilling Fluid Weight Pipe	12 ppg (Specific Gravity of 1.44) Full buoyancy control (pipe full of water)

A summary of the maximum anticipated pull load for each case scenario is provided in Table 4 below. Detailed calculations are provided in Appendix C. The anticipated installation loads shown in Table 4 are well below the ultimate allowable load of the pipe of approximately 3,542,953 lbs, based on a tensile stress equivalent to 60 percent of the yield stress for the given wall thickness and pipe grade provided in Table 2. It is important to note the difference in pull loads when buoyancy control measures are implemented, and water is added to the pipe during pullback, as the estimated installation loads are typically lower when buoyancy control measures are used. Mott MacDonald recommends the use of buoyancy control measures to lower the overall installation loads and stresses for this installation.

Table 4: Summary of anticipated pullback loads

Drilling Fluid Weight (ppg)	Product Pipe Buoyancy Condition	Estimated Pullback Force (lbs)	
10 (Case 1)	Empty	806,132	
10 (Case 2)	Full	449,368	
11 (Case 3)	Empty	931,946	
11 (Case 4)	Full	369,090	
12 (Case 5)	Empty	1,054,075	
12 (Case 6)	Full	284,642	

The HDD Contractor may elect to use buoyancy control measure where a neutrally buoyant conditions is developed to lower the estimated pullback loads. Using a neutrally buoyant pipe during pullback operations lowers the estimated pull force to 369,090 lbs. with a drilling fluid weight of 11 ppg.

Results of the corresponding installation stresses (based on the design bending radius of 3,600 feet) are summarized below in Table 5.

Table 5: Summary of installation stress evaluation

Stress Condition	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
Maximum Tensile Stress	9,556 psi	5,327 psi	11,048 psi	4,375 psi	12,496 psi	3,374 psi
(Percent of Allowable)	(13.7%)	(7.6%)	(15.8%)	(6.3%)	(17.9%)	(4.8%)
Maximum Bending Stress	12,167 psi					
(Percent of Allowable)	(17.4%)	(17.4%)	(17.4%)	(17.4%)	(17.4%)	(17.4%)
Maximum Hoop Stress	3,056 psi	507 psi	3,362 psi	812 psi	3,667 psi	1,118 psi
(Percent of Allowable)	(4.4%)	(0.7%)	(4.8%)	(1.2%)	(5.2%)	(1.6%)
Maximum Unity Check – Tensile and Bending	0.43	0.35	0.45	0.34	0.48	0.32
Maximum Unity Check – Tensile, Bending, and Hoop	0.39	0.09	0.45	0.10	0.53	0.12

As observed in this Table, the results of the HDD installation stress evaluation are within the allowable limits for all cases.

4.5 Hydraulic Fracture Evaluation

The hydraulic fracture evaluation for this crossing has been completed in general accordance with the Delft Geotechnics Method outlined in Appendix B of the Army Corps of Engineers 1998 Report CPAR-GL-98 and 2002 Report ERDC/GSL TR-02-9 (Guidelines for Installation of Utilities Beneath Corp of Engineers Levees Using Horizontal Directional Drilling). This method is used to estimate the maximum effective pressure (i.e. drilling fluid pressure) that can be induced during an HDD operation within an individual soil horizon. This pressure is then compared with the fluid pressure required to induce slurry flow within the HDD bore to determine the potential for a hydraulic fracture for a given HDD alignment. The required fluid pressure for an HDD installation is governed by the drilling fluid weight (commonly referred to as the mud weight), installation length and depth, and drilling fluid flow properties (plastic viscosity, yield point, etc.).

The hydraulic fracture evaluation method described above and used in the HDD industry was developed for soil installations. Currently, no accepted method is available to model/predict the maximum allowable drilling fluid pressure within bedrock materials.

While bedrock tensile strength and unconfined compressive strength evaluations have been used to estimate the allowable drilling fluid pressure within bedrock materials, these methods tend to provide results that are not considered suitably conservative and greatly over-predict the true maximum allowable drilling fluid pressures. These over-predictions are a result of laboratory testing on sound or high-quality bedrock samples that are not representative of the strengths of the weaker bedrock materials that contain natural fractures/joints that are washed out or impacted by the geotechnical coring process. Hence, for bedrock hydraulic fracture evaluation, Mott MacDonald has elected to model the siltstone/shale bedrock materials as a strong soil. Mott MacDonald have used this conservative approach to successfully complete several HDD installations in similar bedrock materials.

The Delft Geotechnics Method assumes a uniform column of soil above any point of interest along the alignment. Where an increased risk of hydraulic fracture is identified, it does not necessarily mean that a hydraulic fracture will occur. A proper HDD execution plan, based on HDD industry standard construction practices, can reduce the risk of a hydraulic fracture from occurring.

To complete the hydraulic fracture evaluation, it is necessary to make several assumptions relative to the bore diameter, drilling fluid pumping rate, and drilling fluid properties. Parameters used in Mott MacDonald's evaluation are provided in Table 6 below. These parameters have been selected based on Mott MacDonald's experience in drilling within similar anticipated geotechnical materials.

Mott MacDonald | HDD Design Report Wickecheoke Creek HDD Crossing PennEast Pipeline Project

Table 6: Assumptions used for hydraulic fracture evaluation

Evaluation Parameter	Value
Pilot Bore Diameter	12-1⁄4 in
Drill Pipe Diameter	6-⁵% in
Drilling Fluid Pumping Rate	600 gal/min
Drilling Fluid Weight (Specific Gravity)	10.5 ppg (1.26)
Yield Point	19.5 lb./100 ft ²
Plastic Viscosity	13 cP

In addition to the assumptions provided in Table 6, assumptions are also required for the anticipated soil formation(s) and their properties including, but not limited to, geotechnical material strength, unit weight, cohesion, friction angle, and shear modulus. These assumptions are provided in Tables 7, Table 8, and Table 9 for the varied subsurface materials that are anticipated for this crossing. For this evaluation, Mott MacDonald assumes that the encountered subsurface material will be similar to that described in Section 2.0, namely, clay and decomposed bedrock overlying siltstone/sandstone bedrock.

Table 7: Material property assumptions for the medium stiff clay soils

Value		
120 lb./ft ³ / 115 lb./ft ³		
1,000 psf		
0°		
240,182 psf		
0.30		

Table 8: Material property assumptions for the decomposed bedrock

Evaluation Parameter	Value		
Soil Unit Weight Above / Below Water Table	130 lb./ft ³ / 135 lb./ft ³		
Effective Cohesion	0 psf		
Internal Friction Angle	22°		
Young's Modulus	449,037 psf		
Poisson's Ratio	0.30		

Table 9: Material property assumptions for the siltstone/sandstone bedrock

Evaluation Parameter	Value		
Soil Unit Weight Above / Below Water Table	140 lb./ft ³ / 145 lb./f		
Effective Cohesion	4,500 psf		
Internal Friction Angle	6°		
Young's Modulus	751,875 psf		
Poisson's Ratio	0.30		

The results of the preliminary hydraulic fracture evaluation for the proposed crossing are provided in Figure 1 below for the pilot bore phase of the installation process. More detailed results are provided in Appendix D. A safety factor has been incorporated into the hydraulic fracture evaluation for the allowable bore pressure within the bedrock, to account for assumptions incorporated into the design and heterogeneity of the geotechnical materials. The graph also displays the total soil/bedrock overburden stress representing the equivalent unit weight of the overlying soil without consideration of any soil strength. Mott MacDonald recommends holding discussions with the HDD contactor if the actual bore pressures trend higher than those values estimated in Appendix D during actual construction, especially if the observed bore pressures spike during the installation.

As shown in the graph, the required bore pressure to facilitate the installation process is below the allowable bore pressure for the installation for the majority of the installation. Overall, the risk of a hydraulic fracture or inadvertent return is relatively low for this crossing. Only in the vicinity of the exit location does the required drilling fluid pressure exceed the allowable drilling fluid pressure. This area of increased inadvertent return risk is considered normal within the HDD industry as the pilot bore is steered upwards towards the exit location. In addition, there is an increased risk of an inadvertent return in the vicinity of STA 5107+00 where the depth of cover is lowest.

Once the pilot bore is completed, the hydraulic fracture risk associated with the reaming, swab, and pullback phase of the installation typically decreases, assuming the bore is reamed to its full extent and a subsequent swab pass is completed through the bore prior to installing the pipe. However, it is important to note that although the hydraulic fracture potential is significantly reduced, a hydraulic fracture event may still occur during the reaming pass if the bore becomes plugged or blocked such that the required drilling fluid pressure increases in magnitude to the point where it exceeds the estimated allowable mud pressure for the overlying soils. Use of HDD industry-standard construction practices, such as pumping sufficient drilling fluids, maintaining drilling fluid returns, monitoring and maintaining drilling fluid, and returning slurry properties, etc., should reduce any potential loss of drilling fluids.

Figure 1: Calculated, recommended, and allowable drilling fluid pressures

5 HDD Risk Discussions

5.1 HDD Risk Characterization

Risk identification and mitigation is paramount to successfully completing the Wickecheoke Creek Installation. Discussions of the general risks associated with these crossings are presented below.

5.2 HDD Industry - State of Practice

Mott MacDonald maintains an up-to-date database of successfully completed HDD installations based on pipeline diameter and installation length, as shown in Table 10 below. This database is used to assess the achievable installation length for a given pipeline diameter. The green shaded cells indicate the common range of HDD industry experience/capability and was established with the requirement that several contractors have successfully completed similar installation lengths at the required pipe diameter. The yellow shaded cells identify the installation lengths and diameters that are considered feasible with an experienced contractor in favorable ground conditions. The red shaded cells are considered to be at the limits of, or beyond, the current state-of-practice for the HDD industry.

Installation Length **Product Pipe** 1.000 m 1,200 m 1,400 m 1,600 m 1,800 m 2,000 m 2,200 m 2,400 m 2,600 m 2,800 m 3,000 m 3,750 m 3,500 m Diameter 3.281 ft 3.937 ft 4,593 ft 5,249 ft 5 905 ft 6,562 ft 7,218 ft 7.874 ft 8,530 ft 9 186 ft 9.842 ft 11.483 ft 12,303 ft 200 mm (8 inch) 16 9 14 10 0 0 250 mm (10 inch) 11 0 0 300 mm (12 inch) 10 4 3 0 350 mm (14 inch) 0 0 0 0 0 400 mm (16 inch) 9 6 0 0 3 450 mm (18 inch) 0 0 0 0 0 0 0 500 mm (20 inch) 10 600 mm (24 inch) 30 12 9 9 750 mm (30 inch) 23 10 10 11 8 3 3 900 mm (36 inch) 0 1050 mm (42 inch) 1200 mm (48 inch)

Table 10: State of the HDD Industry

Within typical capabilities of industry. Multiple experienced contractors.

Zone of limited industry application. Considered feasible with an experienced contractor and favourable ground conditions.

Exceeds current capabilities of industry. Considered risky even with an experienced contractor and favourable ground conditions.

NOTE: Current State of the HDD Industry shown above is based solely on the reported installation lengths and diameters. Site-specific geotechnical and installation based risks have not been considered in developing this chart.

It is very important to note that the state of the HDD industry shown above includes crossings with similar elevations between HDD entry/exit locations and the crossing feature, good soils/bedrock materials, and adequate staging area for fabricating the pipe string. These completed projects mostly reflect those with low risk profiles (especially for larger and longer HDD installations). As such, when comparing a specific crossing to those completed projects within the HDD industry, the site-specific geotechnical and crossing risks need to be thoroughly considered and evaluated to ensure comparison to the completed project listings is deemed to be adequate. If the current proposed crossing carries a low risk profile, then the comparison can serve as a guide to what has been successfully completed within the HDD industry. However, if the current proposed crossing carries a high-risk profile, then the comparison to the completed projects may not be applicable.

As observed in Table 10 above, a few HDD installations have been successfully completed at or near a diameter of NPS 36 for lengths similar to or longer than the horizontal installation length of approximately 3,309 feet, with a true pipe length of approximately 3,363 feet, required for this crossing. Therefore, from a constructability standpoint, the Wickecheoke Creek Installation falls within the zone of limited experience

of what has been accomplished to date within the HDD industry and will require an experienced HDD contractor to undertake the work.

5.3 Geotechnical Risk Discussions

Sands, silts, and clays typically present no significant challenge to an HDD installation. These materials are often described as good to excellent materials in terms of feasibility. However, when these soils exist in a soft or loose state, they may not provide sufficient strength to resist the required fluid pressures necessary to complete an HDD installation. Within these materials, the required drilling fluid pressures can exceed their strength, resulting in the formation of a hydraulic fracture through the overlying soils and ponding of drilling fluids at the ground surface. This risk can only be mitigated by placing the HDD bore within more favorable geotechnical materials that provide greater resistance to induced drilling fluid pressures, or by using conductor casings to provide an open pathway for drilling fluid flow.

Soils containing gravels and larger size particles (cobbles) range from marginally acceptable to unacceptable in terms of feasibility, depending upon the percentage of gravels by weight and particle size. Only those particles that can be suspended within the drilling fluid can be removed from the bore. Generally speaking, gravel-sized particles less than approximately 0.5 to 0.75 inches can be removed from the bore, provided good HDD practices are followed. Particles greater in size typically cannot be suspended by the drilling fluid and tend to settle out and accumulate along the bottom of the bore. The risks associated with accumulation of larger particles within the bore increase with greater bore diameter, due to the greater exposed soil materials in the crown of a larger bore. Gravel deposits containing large particles were not observed during the geotechnical investigations.

Bedrock can be highly variable and can be classified as being excellent to unacceptable with respect to HDD feasibility. Competent bedrock is well suited for HDD as the bore tends to remain open for extended periods of time. However, heavily weathered, jointed, fractured or fissured bedrock can present challenges with respect to bore stability. In fact, poor quality bedrock can present the same challenges as coarse granular (gravel) deposits, where fracturing and jointing is extensive and present an unacceptable risk in terms of constructability to an HDD installation. The risk associated with these materials arises from the inability to support and maintain stability within the bore.

This risk increases with RQD ratings below 60 percent. For the Wickecheoke Creek installation, the rock quality is typically greater than 60 percent based on the borings. Isolated areas of poor-quality siltstone exist primarily at the soil/rock interface and improve in quality with an increase in depth. The poor-quality bedrock at the transition zone of the soil/rock interface can cause both steering problems and borehole instability, especially in a dry hole condition.

Preferential flow pathways may occur where heavily weathered, jointed, fractured or fissured bedrock exists. If interconnected, preferential flow pathways may exist for drilling fluid losses into the rock mass, horizontally to the face of a slope, or upwards towards the ground surface. Fortunately, the presence of the drilling fluid slurry within the bore is often capable of sealing fractures and/or joints as drilling fluids migrates into these features, resulting in low potential for inadvertent returns of drilling fluids at the ground surface.

Based on the geotechnical information available to date, the HDD installation has been designed within favorable geotechnical materials to the extent possible.

5.4 Crossing-Specific Risk Discussions

Controlling and maintaining fluid flow within the bore is critical to the success of an HDD installation. Installation risks significantly increase when slurry circulation is not maintained within the HDD bore. The flow of drilling fluid follows the path of least resistance. As long as the bore is located within favorable geotechnical materials at a sufficient installation depth and properly drilled by the HDD contractor, a stable flow pathway can be created between the drill bit and the HDD entry or exit locations, and maintaining drilling fluid flow within the bore should not be an issue. As observed in the hydraulic fracture evaluation, loss of drilling fluids through the overlying soil is not anticipated for this crossing.

The length of the pipe staging area is insufficient to fabricate the product pipe into a single string prior to pullback operations and an intermediate weld will be required. The intermediate weld will require stoppage of pullback operations for the new pipe segment is welded on. This stoppage represents a significant risk to the installation because the bore is required to remain open much longer than would be required for the installation of a single pipe string. In good quality bedrock that is anticipated for the Wickecheoke Creek HDD Crossing, maintaining stability is possible yet represents a moderate risk. Stoppages for the intermediate welds also provide downtime, while welding occurs, that allows the drilling fluids to "gel" and which can make it harder to resume pullback operations due to the increased friction between the gelled fluids and the product pipe. Start-up loads will increase when pullback operations are resumed. In some cases, the gel strength of the fluids is too great and the resulting loads lead to damage of the product pipe or the pipe may become stuck at its current position in the bore. Prior to pullback operations, a swab pass should be completed to gauge whether the bore has been conditioned to accept the product pipe. Areas of high torque and/or pull force should be re-reamed to lower the drill rig effort to pass tools through this portion of the bore. The product pipe should be installed with the shortest section of pipe first with the longest pipe section last to decrease the startup load on the pipe required to resume drilling operations. A hydraulic thruster may be required to help push the pipe into the bore as the drill rig pulls.

The exit location is approximately 39 feet higher than the elevation of the entry location which will result in approximately 186 feet of dry hole above the rig elevation. Once the bore is advanced above the elevation of the drilling rig it may be difficult to maintain a column of drilling fluid within the portion of the bore above the elevation of the HDD entry location. Lack of a full column of drilling fluid to help support the portion of the bore above the elevation of the lower drill rig can lead to instability and raveling of the bore within this section. Boring B-54 indicates a layer of dense silty sand overlying dense decomposed bedrock along the exit tangent. Risks of an unsupported bore in the site soils and poor-quality bedrock present a significant raveling or bore instability risk. The density of this soil layer and the presence of fine grained soil constituents (i.e. silt and clay) will help to reduce tendencies for raveling within this area. However, the HDD Contractor will need to be prepared to deal with any bore instability and raveling in the event it becomes a significant issue. The HDD contractor will need to pay attention to the swab pass to determine if any debris has accumulated within the bore. This risk is common to HDD installations and can be managed appropriately during construction.

With the elevation difference, the HDD Contractor will need to be prepared for flushing events that may occur during the drilling process where uncontrolled flow of fluids flow out of the bore towards the lower elevation HDD entry location. The HDD Contractor must be prepared to contain and capture these fluids at the entry location. This can easily be accomplished with mud pumps, mud lines, and several storage tanks on this side of the crossing.

During pullback operations, the HDD Contractor must provide injection of drilling fluids into the bore at the HDD exit location (pipe entry location) in addition to the drilling fluids injected through the pulling assembly. These fluids are necessary to reduce the potential damage to the pipe coating from being pulled through a dry hole.

6 Summary

For the Wickecheoke Creek installation, geotechnical risks have been acknowledged, but no fatal deterrents have been identified within the alignment. Based on the required installation length and diameter, the HDD contracting community in North America has successfully completed a limited number of HDD installations of similar lengths.

While not anticipated, if an attempted HDD installation is unsuccessful, the proposed HDD alignment could be modified using the same HDD entry/exit locations to accommodate an additional HDD attempt, depending on the condition that resulted in the HDD failure. Prior to attempting a second HDD crossing, a risk mitigation workshop should be held with all parties to determine the cause of the initial failure and any mitigation measures that could be adopted to reduce the risk(s) during the second HDD attempt.

7 Limitations

This report is intended to be used in its entirety. The data, interpretations, conclusions, and recommendations contained within this report are provided for informational purposes for PennEast, and pertain specifically to the Wickecheoke Creek HDD installation. The data and conclusions presented herein do not and should not be applied to any other project site or HDD installation. Interpretations of the subsurface conditions are based on the information obtained from the geotechnical borings. The subsurface conditions presented between the geotechnical borings are interpretations and may vary from the actual conditions encountered.

It is recommended that Mott MacDonald provide construction monitoring services to verify the subsurface conditions encountered during construction, provide field design services, and evaluate contractor performance in accordance with the contract and the approved contractor supplied work plan.

Appendix A

HDD Plan and Profile

Mott MacDonald | HDD Design Report Wickecheoke Creek HDD Crossing PennEast Pipeline Project

Appendix B

Geotechnical Boring Logs

SOIL/ROCK BORING LOG LEGEND

USCS Group Symbol

		UNIFIED SOIL CLASSIFICATION	N SYSTEM AND SY	MBOL C	CHART
COARSE-GRAINED SOILS (more than 50% of material is larger than No. 200 sieve size.)			FINE-GRAINED SOILS (more than 50% of material is smaller than No. 200 sieve size.)		
		Clean Gravels (Less than 5% fines)			Inorganic silts and very fine sands, rock
Gravels More than 50% of coarse	GW	Well-graded gravels, gravel-sand mixtures, little or no fines	SILTS	ML	flour, silty of clayey of clayey fine sand or clayey silts with slight plasticity
	GP	Poorly-graded gravels, gravel-sand mixtures, little or no fines	CLAYS Liquid limit less than 50%	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
fraction larger than N.4 sieve size			Total Mail 5070	OL	Organic silts and organic silty clays of low plasticity
	Gra	evels with fines (more than 12% fines)			Inorganic silts, micaceous or
	GM	Silty gravels, gravel-sand-silt mixtures	SILTS AND	MH	diatomaceous fine sandy or silty soils, elastic silts
	GC	Clayey gravels, gravel-sand-clay mixtures	CLAYS Liquid limit 50%	СН	Inorganic clays of high plasticity, fats clays
		Clean Sands (Less than 5% fines)	or greater	ОН	Organic clays of medium to high plasticity, organic silts
Sands More than 50%	sw	Well-graded sands, gravelly sands, little or no fines	HIGHLY ORGANIC SOILS	PT	Peat and other highly organic soils
of coarse fraction larger than N 4	SP	Poorly-graded sands, gravelly sands, little or no fines	Determine percentages of sand and Gravel from grain-size curve. Depending on percentage of fines (fraction smaller than No. 200 sieve size), coarse-grained soils are classified as follows:		ler than No. 200 sieve size).
sieve size	Sands with fines (More than 12% fines)		Tombe granded sons are		1010 43.
	SM	Silty sands, sand-silt mixtures	Less than 5 percent		GM, GC, SM, SC
	SC	Clayey sands, sand-clay mixtures			

Weathering of Rock Mass

Description	Symbol	Criteria	Grade
Fresh (Unweathered)	FR	No visible sign of rock material weathering, except slight discoloration on major discontinuity surfaces.	I
Slightly Weathered	SL	Discoloration indicates weathering of rock material and discontinuity surfaces. All rock material may be discolored by weathering and may be somewhat weaker than externally than in its fresh condition.	п
Moderately Weathered	М	Less than half of the rock material is decomposed and/or disintegrated to soil. Fresh or discolored rock is present either as a continuous framework or as corestones.	ш
Highly Weathered	Highly H disintegrated to a soil. Fresh or discolared rock is present		IV
Completely Weathered C All rock material is decomposed and/or disintegrated to soil. The original mass structure remains largely intact.		V	
Residual Soil	RS	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.	VI

Field Strength*

Description	Criteria		Approx. Range of Uniaxial Compressive Strength (psi)	
Extremely Weak	Indented by thumbnail.	R0	40 – 150	
Very Weak	Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife.	R1	150 – 700	
Weak	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer.	R2	700 – 4,000	
Medium Strong	promise promise promise promise in the promise in t		4,000 – 7,000	
Strong	trong Specimen requires more than one blow of geological hammer to fracture it.		7,000 – 15,000	
Very Strong	Specimen requires many blows of geological hammer to fracture it.		15,000 - 36,000	
Extremely Strong	Specimen can only be chipped with geological hammer.	R6	>36,000	

Minor Components

Description	Criteria
20 - 30%	some
10 - 20%	little
1-10%	trace

Infilling

Description	Symbol
Clay	CL
Silt	ML
Sand	SD
Calcite	CA
Carbonate	С
Dolomite	DO
Gypsum/Tale	GY
Hematite	HE
Limonite	L
Quartz	QZ
Chlorite	CH
Pyrite	PY
Iron Oxide Staining	FE
Stylolite	ST
Not Determined	X
None	N
Healed	H

Discontinuity Spacing

Description	Symbol	Spacing (in.)
Extremely Close	EC	< 0.75
Very Close	VC	0.75 - 2.5
Close	C	2.5 - 8.0
Moderate	M	8-24
Wide	W	24 – 80
Very Wide	VW	80 - 24
Extremely Wide	EW	> 240

Spacing Type

Description	Symbol	nbol Spacing (in.)	
Joint	J	A natural fracture along which no displacement has occurred. May occur in parallel groups called sets.	
Shear	S	A natural fracture along which differential movement has occurred. May be slickensided or striated.	
Fault	F	A natural fracture along which displacement has occurred. Usually lined with gouge and slickensides.	
Vein	V	A thin, sheet-like igneous intrusion into a fissure.	
Bedding Joint	В	Joints that occur along bedding planes.	
Foliation Joint	FJ	Joints that occur parallel to the foliation of a rock mass.	
Shear Zone	SZ	Zone of fractured rock and gouge bordering the displacement plane,	

Roughness

Intermediate Scale	Symbol	Small Scale	Symbol
Stepped	S	Rough	R
Undulating	U	Smooth	Sm
Planar	P	Slickensided	K
Not Determined	X	Wavy	Wa
		Not Determined	X

Weathering/Alteration of Discontinuity Surfaces

Description	Symbol	Criteria
Fresh	FR	No visible sign of weathering on the rock discontinuity surfaces.
Discolored	DS	Discoloration of rock material discontinuity surfaces. Degree of discoloration and specific discolored mineral constituents (if applicable) indicated.
Disintegrated	DG	Discontinuity surface rock material is weathered to a soil with the rock material fabric intact. Rock material is friable, but the mineral grains are not decomposed.
Decomposed	DE	Discontinuity surface rock material is weathered to a soil with the rock material fabric intact and with some or all mineral grains decomposed.

Aperture

Description	Symbol	Aperture (in.)		
Very Tight	VT	< 0.004		
Tight*	T	0.004 - 0.010	"Closed" Features	
Partly Open	PO	0.01 - 0.02		
Open**	0	0.02 - 0.10		
Moderately Wide	MW	0.1 - 0.4	"Gapped" Feature	
Wide	W	> 0.4		
Very Wide	VW	0.4 - 4.0		
Extremely Wide	EW	4.0 - 40.0	"Open" Features	
Cavernous	CA	> 40		

^{*&}lt;u>Note</u>: The Uniaxial Compressive Strength ranges are approximate; therefore, a <u>geotechnical engineer</u> should be consulted for verification of rock strength.

MOTT MACDONA	M ALD M	BOREHOLE LOG GRAPHIC LEGEND		
	Daniel Disaling Project	Project	t No.:	353754
Project:	PennEast Pipeline Project	Project	t Manager:	Vatsal Shah
Location:	Wick Creek, Stockton, NJ		t Director:	Michael Wilcox
Client:	PennEast Pipeline	- Tojoo	. Bilootoii	

Soil Log Graphic Legend

DECOMPOSED ROCK: Decomposed

GM: USCS Silty Gravel

ML: USCS Silt

SM: USCS Silty Sand

TOPSOIL: Topsoil

Rock Log Graphic Legend

MUDSTONE - Mudstone

SILTSTONE - Siltstone

SANDSTONE - Sandstone

SHALE - Shale

Ground Water Level (Note that due to drilling process disturbance the ground water levels obtained during drilling are not as representative as those obtained from monitoring wells)

MOT	T DONAL	M D	M				SOIL BORING LOG									BORING NO.: B-54 Page 1 of 2				
Project Location Client: Drilling	on:	PennEast Pipeline Project Project No.: 353754 Wick Creek, Stockton, NJ Project Mgr: Vatsal Shah PennEast Pipeline Field Eng. Staff: Thileepan Raj Craig Test Boring Co., Inc. Date/Time Started: March 28, 20° Nick Beehler /Miles Neipert Date/Time Finished: April 1, 2019 a										an Rajah/ I 8, 2019 at	Cyle Hansen 12:40 pm							
Item Type Length (Inside Di Hammer	ft) ia. (in.) Wt. (lb.)	Vertical Datum: N Casing Sampler HW SS 5 2 4 1.375 140 140 30 30 30			NQ2 5 [2.0 [☐ ATV ☐ Geoprobe ☐ ☑ Track ☐ Air Track		d SLC □ Cat- ☑ Win ☑ Roll	verline ROW approx. 550's Ha Cat-Head Winch Roller Bit		Hammer Type Safety Doughnut Automatic		ord. rizor rillin Bent Poly Wate	: N ntal I ng Flo onite mer er	: 40. Datu uid	43553 E: m: NAD 1	43553 E: -74.97302 m: NAD 1983 Drill Rod Size: Casing Advance Mud Rotary		
Depth/ Elev. (ft)	Sample No. / Interval (ft)	Rec. (in)	Sample Blows per 6"	Stratum Graphic	USCS	(Density/consistency, color, Group Name,								Remarks						
- 390	S-1 0.0'- 2.0'	14	2 3 3 5		ML	3.5	dedium stif	f, reddish bro	own SILT, ti	race Clay, dry	y (ML)		_	-						
	S-2 5.0'- 7.0'	14	11 10 11 10		SM	N	1edium der	nse, dark bro	wn Silty me	dium to fine s	SAND,	moist (SM)		-	-	=	Installed 4	inch Casing a	at 5 feet BGS	
10	S-3 10.0'- 12.0'	16	13 17 15 17		SM		ense, dark SM)	t brown Silty i	medium to	fine SAND, tr	race fin	e Gravel, moist	-	_						
- 290	S-4 15.0'- 17.0'	12	8 12 13 16			13.5	ense, redo	dish brown Di	ECOMPOS	ED ROCK w	ith Silt,	moist		3 35		E	Installed 4	-inch casing a	it 15 feet BGS	
Date	Time	Water Le Elapsed Time (hr)		oth in fee Bottom of Hole	1	⊣ т .	Sample Open End Thin-Wall Undisturb	d Rod	TV	es: = Pocket P = Torvane	enetro	ometer								
NOTES:	S Split Spoon Sample G Grab Sample Dilatancy: N - None S - Slow R - Rapid Toughness: L - Low M - Medium H - High Dry Strength: N - None L - Low M - Medium H - High VH - Very High ES: 1.) "ppd" denotes soil sample average diametral pocket penetrometer reading. 3.) Maximum Particle Size is determined by direct observation within limitations of sampler size. 4.) Soil identifications and field tests based on visual-manual methods per ASTM D2488.																			

MOTT M MACDONALD M						SOIL BORING LOG		BORING NO.: B-54				
MACI	DONAL	υ ———	IAI	l		(continued)	Fi	ield '	Tes	ts		Page 2 of 2
Depth/ Elev. (ft)	Sample No. / Interval (ft)	Rec. (in)	Sample Blows per 6"	Stratum Graphic	USCS Symbol Group	Visual - Manual Identification & Description (Density/consistency, color, Group Name, constituents, particle size, structure, moisture, optional descriptions, geologic interpretation, Symbol)	Dilatancy	Toughness	Plasticity	Dry Strength		Remarks
	S-5	20	25 17			Dense, reddish brown DECOMPOSED ROCK, trace Silt, dry	-	-	-	-		
	20.0'- 22.0'		24									
_											3	
											5	
280 -	1											
- 1												
— 25	S-6	11	28			Very dense, reddish brown DECOMPOSED ROCK fragments, dry	-	-	-	-		
	25.0'- 27.0'		50/5"	-								
	27.0											
<u> </u>						,						
-	-			6								
-												
						30.0						
- 30	1											
-	-											
-	-					,						
L		-				•						
- 270												
	1											
35	+											
-												
Ī	1					N 2						
	1											
-	-											
— 40												
 										1		
+	-											
- 2	60											
45	1		c									
-	-				1.2							
							D	RO	IFC	TNO	D.:	BORING NO.:
NOTES: F TV = Torv	PP = Pocket Pene vane	trometer						53				B-54
	- 411		!! =!	overess -	amatral nea	ket penetrometer reading. 2.) "ppa" denotes soil sample average axial pocket pe	enetr	omet	ter r	eadin	ng.	
NOTE	S: 1.) "ppo 3.) Max	denotes dimum Pa	s son sample rticle Size is	average di determined	by direct of	ket penetrometer reading. 2.) "ppa" denotes soil sample average axial pocket penservation within limitations of sampler size. 4.) Soil identifications and field tests	bas	ed or	n vis	ual-n	nanual metho	ds per ASTM D2488.

MOT MAC	18	ΔΙΠ	M	М					CORE BORING LO	OG							В	ORING NO.: B-54	
Project: PennEa				eline Pr	niect				Project No.:		25	3754	1				Page 1 of 4		
Location:				reek, S					Project No.:					t Shah	í				
Client:			PennEa	ast Pipe	eline					Field Eng. St					/ Kyle	Kyle Hansen			
Drilling Co.:				est Bo					Date/Time Started:					28, 2					
Driller/Helper:			Vick Be	ehler /				/D 1000		Date/Time Fi		April 1, 2019 at 2:30 pm							
Elevation: 303 fi Item Type		s it.	Cas	ing		al Datt		VD 1988 Core Bit	Boring Location: Adjacent to powerline R of Rosemont - Ringoes Road	ROW approx. 550	' southe	ast Co	ord.	: N:	40.4	3553	E: -7	74.97302	
			HV		NQ2		Imp. Diamond		Horizontal Datum: NAD 1983			Dr	Drilling Method: W						
Length (Inside D			5 4			5 2.0	+	3.25 2.0	Rig Make & Model: CME-55LC										
Depth/ Elev. (ft)	Avg Core Rate (min	Depth (ft)	epth (fit) (Box) (in. / (in / Rock Core No. %) %)						Visual Identification, Description and (Rock type, colour, texture, weath field strength, discontinuity space optional additional geological observances	nering, cing,	Depth (ft.)	5000		Discontinuities				Remarks	
	`/ft)			,	,,,	Hard.	Weath		SEE TEST BORING LOG FOR OVERBURD	Eller Control of the Control	-		ype Dip Rgh Wea						
	1.67	30.0						× × × × × × × × ×	SILTSTONE, reddish brown, fine grained, h weathered, very weak, closely spaced disco 30°-35' Fractured zone	nighly ontinuities								Installed 20 feet of Casing	
	1.58							× × × × × × × × × × × ×											
	1.83		R-1	59 98%	4 7%	R1	н	X X X X X X X X X X X X											
	3.33	35.0 35.0 40.0 40.0 45.0						× × × × × × × × ×											
—35 -	4.13							X X X X X X X X X X X X X X X	SILTSTONE, reddish brown, fine grained, h	aighly								Low water return	
	7.5							× × × × × × × × ×	weathered, very weak, very close spaced discontinuities 35' - 36.2' Fractured zone	iginy								35 feet BGS No water return 35.75 to 40 feet BGS	
	5.9			15 25%	0 0%			× × × × × × × × ×											
	5.1		R-2			R1	Н	× × × × × × × × × × × ×										ļ	
	5							× × × × × × × × ×											
—40 -	4.8							× × × × × × × × ×	SILTSTONE, reddish brown, fine grained, m	noderately								No water return 40 to 45 feet	
-	3.75			60 100%	13 22%	R1		× × × × × ×	weathered, very weak, very close to close sp discontinuities 40' - 41.9' Fractured zone	Jaced								BGS	
	2.7		R-3					× × × × × × × × ×											
260	3		K-3				М	× × × × × × × × ×	42.65' - 45' Fractured zone										
	2.9							× × × × × × × × × × × × × × × × × × ×											
—45 -	3.4							× × × × × × × × ×	SILTSTONE, reddish brown, fine grained, rr weathered, weak, very close to close space discontinuities	noderately ed									
	3.1							× × × × × × × × ×	45° - 46.3' Highly fractured zone		46.45	J	50	P,R	FR	PO	N		
-8	1.7		R-4	56 93%	17 28%	R2	м	X X X X X X X X X X X X X X X X X X X			47.00	J	20	P,R	FR	PO	N		
-	2							× × × × × × × × ×			48.60	J	25	D 0	ED	PO	N		
<u> </u>	1.6	50.0		•				× × × × × × × × × × × × × × × ×			-0.00	J	20	P,Sm	i-IK	-0	N	,	
		V		evel D				Notes											
Date	Tim		lapsed Time (hr) -		Depth i of Bo ng of		to: Water												
		-						-											
								-						Boi	ring N	No.: E	3-54	4	

B.4	IOT1	-		M						CORE DODING LOC							ВС	RING NO.: B-54
		OON	ALD	IVI	M					CORE BORING LOG (continued)							Р	age 2 of 4
El	pth/ ev. ft)	(min	Depth (ft)	Run/ (Box) No.	Rec. (in. / %)	RQD (in. / %)	Rock		Stratum Graphic	Visual Identification, Description and Remarks (Rock type, colour, texture, weathering, field strength, discontinuity spacing, optional additional geological observations)	Depth (ft.)	(See	Legend f	or Rock		tion Sys		Remarks
-		/ft)	50.0				Hard.	Weath	x x x	SILTSTONE, reddish brown, fine grained, slightly		Type	DID	Rgn	wea	Apei	11111111	
		1.5	50.0						× × × × × × × × ×	weathered, medium strong, very close to moderate spaced discontinuities								
	-								$1 \times \times \times 1$		50.90	J	25	P,R	FR	PO	N	
		2							× × × × × ×		51.50	J	20	P,Sm	FR	PO	N	
	-			5.5	57	37	R3	SL	× × ×	51.95' - 54.4' Sub-vertical fracture								
		1.9		R-5	95%	62%	I KS	SL	× × ×									
	250	1.6							X									
									X X X X X X X X X X X X X X X X X X									
		2.3	55.0						× × × × × ×									
-5	5		55.0 55.0						× × × × × ×	SILTSTONE, reddish brown, very fine to fine grained, slightly weathered, medium strong, very close to								
		1.3							x x x	moderate spaced discontinuities	55.83	J	20	P,R	FR	PO	N	
									x x x x		56.35	J	15	P,Sm	FR	Т	N	
		1.4							X X X X X X X X X X X X X X X X X		56.82	J	10	P,Sm	FR	Т	N	
		2		R-6	57 95%	37 62%	R3	SL	× × × × × × × × × × × × × × × × × × ×	57.4' - 58.15' Fractured zone								= -
-		-	1		3370	52,0			× × × ×									
		1.3							X X X X X X X						_			
-									× × ×		58.90	J	10	P,Sn	n FR	PO	N	
		2.2	60.0						x x x x									
— t	60	1.9	60.0						X	SILTSTONE, reddish brown, fine grained, slightly weathered, strong, very close to moderate spaced discontinuities								
_		_	-						IV V VI	discontinuities	60.68	J	20	P,Sr	n FR		N	
		1.4							× × × × × × × × ×		61.35	J	20	P,Sr	n FR	T	N	
_			-			10			X X X	62' - 62.75' Sub-vertical fracture	10							
		1.5		R-7	100%	13 22%	R3	SL	× × ×	62.75' - 68.12' Fractured zone								
-	240	1	1						× × × × × × × × × × × × × × × × × × ×	02.70								
		1.5							× × × × ×									
		2.4							× × × × × × × × × × × × × × × × × × ×									
L	65	-	65.0		-				- × × ×	SILTSTONE, reddish brown, fine grained, slightly								
		1.3							× × × × × ×	weathered, medium strong, very close to close spaced discontinuities								
ŀ		+	1						× × × × × ×	65' - 66.8' Fractured zone								
		2.2							× × × × × × × × × × × × × × × × × × ×		66.80	, J	15	P,S	m FF	2 0	N	23
		2.5		R-8	57		R3	SL	× × × ×	67.35' - 68.12' Fractured zone	67.35	5 J	10	U,i	R FF	2 0	N	
F		-	-		95%	27%	9		× × × × × ×									
		3.3							× × ×		68.47	7 J	15	P,	R FI	R P	o N	
-		+	+						× × × × × × × × × × × × × × × × × × ×		69.2	7 J	10	P.S	Sm FI	R P	0 N	
		2.6	70.	0							35.2							
	-70	1.7	70.	_	T				× × ×	SILTSTONE, reddish brown, fine grained, slightly weathered, medium strong, very close to close spaced								
L		1./	1						× × ×	discontinuities	70.6	0 J	5	S,S	Sm Fi	RP	0 1	'
		1.6	3						× × × × × × × × × × × × × × × × × × ×									
-		-	-						× × ×		71.8	3 J	15	5 P,S	Sm F	RP	10 0	
		1.8	3	R-	9 60	25 % 42%	6 R3	SI		. •	~							
1	23		-						× × × × × ×									
		1.9	9						× × × × × ×	, a	73.7	1	15			- 1	T	1
		2							× × × × × × × × × × × × × × × × × × ×	w	74.0	5 J	10	υ P,	Sm F	R	T	
L			75	.0					× × ×			+						
										050754					Borin	na Ni	o.: B -	.54
L	NOTE	S:								PROJECT NO.: 353754					UUII	9 146		

MOT MAC		ALD	M	М	V0015461				CORE BORING LOG								DRING NO.: B-54 Page 3 of 4
Depth/ Elev. (ft)	Avg Core Rate (min /ft)	Depth (ft)	Run/ (Box) No.	Rec. (in. / %)	RQD (in. / %)	TO AND SERVICE	Core	Stratum Graphic	Visual Identification, Description and Remarks (Rock type, colour, texture, weathering, field strength, discontinuity spacing, optional additional geological observations)	Depth (ft.)		e Legen	iscon	k Descri	ption Sys	item)	Remarks
	1.4	75.0				Tidiu.	Weath	× × × × × × × × × × × × × × × × × × ×	SILTSTONE, reddish brown, fine grained, slightly weathered, medium strong, close to moderate spaced discontinuities		Туре	Dip	Rgh	Wea	Aper	Intill	- 10 IV.
-	1.6							× × × × × × × × × × × × × ×		76.35	J	30	P,Sm	FR	т	N	
	1.9		R-10	60 100%	27 45%	R3	SL	× × × × × × × × × × × ×		76.90 77.20	J	35 10	P,R P,Sm	FR FR	PO T	N N	
-	1.8							× × × ×		77.72	J J	20 45	U,R P,R	FR FR	T	N	
	1.8	80.0						× × × × × × × × ×	r.	78.70 78.95	J	20 25	P,Sm P,Sm		T	N	
—80 -	1.5	80.08						x x x x x x x x x x x x x x x x x x x	SILTSTONE, reddish brown, fine grained, moderately weathered, weak, very close to close spaced discontinuities								
	0.9							× × × × × × × × × × × × × × × × × × ×	80' - 81.8' Fractured zone								
77 <u>.</u>	0.6		R-11	54 90%	6 10%	R2	М	× × × × × × × × ×	81.8' - 82.4' Clay seam 82.4' - 84.45' Fractured zone								
220	1.3							× × × × × × × × ×		83.60	J	40	P,Sm	FR	PO	N	
8	1.8	85.0						× × × × × × × × ×					, ,0		, 0		
-85 -	1.5	85.0						× × × × × × × × × × × × × × × × × × ×	SILTSTONE, reddish brown, fine grained, slightly weathered, medium strong, very close to moderate spaced discontinuities								
00	2.7							× × × × × × × × ×	85.9' - 86.7' Fractured zone	86.70	J	20		1			
3.5	2.3		R-12	56 93%	31 52%	R3	SL	× × × × × × × × ×		87.50	J	30 25	P,Sm P,R	FR	PO PO	N	
	1.4							× × × × × × × × × × × × × × × × × × ×									
- 90 -	1.8	90.0						× × ×		88.88	J	40	P,Sm	FR	PO	N	
-90 -	2.1	90.0						× × × × × × × × × × × × × × × × × × ×	SILTSTONE, reddish brown to gray, fine grained, slightly weathered, medium strong, very close to moderate spaced discontinuities 90.45 - 92.05 Fractured zone								
	1.2				2	000000000000000000000000000000000000000		× × × × × × × × × × × × × ×	32.00 (1.00.00.00.00.00.00.00.00.00.00.00.00.00								
	1.5		R-13	60 100%	27 45%	R3		× × × × × × × × × × × × × × × × × × ×	92.55' - 93.5' Fractured zone								
210	1.6							× × × × × × × × × × × × × × × ×		93.50	J	10	P,Sm	FR	РО	N	
-95 -	1.8	95.0	i.					× × × × × × × × × × × ×									
	1	95.0						× × × × × × × × × × × ×	SILTSTONE, reddish brown to gray, fine grained, slightly weathered, medium strong, very close to moderate spaced discontinuities	95.87	J	40	2.0	FD.	_		
-	1.1							× × ×		96.80	J	15	P,R P,R	FR FR	T PO	N	
	1.7		R-14	60 100%	42 70%	R3	SL	X X X X X X X X X X X X X X X	•	97.83	J		P,Sm		PO	N	8
	2.2							× ×									
	1.9	100.0		89				× × × × × × × × ×	00.0								
NOTES:									PROJECT NO.: 353754				Boi	ring 1	No.: F	3-54	

MOT	Γ DON	ALD	M	M					CORE BORING LOG	14					RING NO.: B-54 age 4 of 4
epth/ Elev. (ft)	Avg		Run/ (Box) No.		RQD (in. / %)	Rock		Stratum Graphic	Visual Identification, Description and Remarks (Rock type, colour, texture, weathering, field strength, discontinuity spacing, optional additional geological observations)	Depth (ft.)		end for Ro	ntinuities	System)	Remarks
	7.0					Hard.	Weath		End of boring at 100 feet BGS Borehole grouted with cement and bentonite holeplug.	587					
200											7				
05			ray .												
110															
-115															
	-														
120												Es.			
- 1						6					٠				
-															

Figure B-54.1 B-54 Box 1 Runs 1-4 Dry

Figure B-54.2 B-54 Box 1 Runs 1-4 Wet

M

PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-54.3 B-54 Box 2 Runs 5-8 Dry

Figure B-54.4 B-54 Box 2 Runs 5-8 Wet

PennEast Pipeline Project

Rock Core Photographs

BORING NO.:

Figure B-54.5 B-54 Box 3 Runs 9-12 Dry

Figure B-54.6 B-54 Box 3 Runs 9-12 Wet

PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-54.7 B-54 Box 4 Runs 13-14 Dry

Figure B-54.8 B-54 Box 4 Runs 13-14 Wet

PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

MOT	T DONAL	M D	М			SOIL	BORING LO	G					BORING NO.: B-55 Page 1 of 1
Project Location Client: Drilling	on: g Co.:	Wick Cre PennEas Craig Te	st Pipeline st Boring	kton, NJ e Co., Inc.	7.7			Project No.: Project Mgr: Field Eng. Staff Date/Time Start		K	(yle	al S Har	
Driller/ Elevation	Helper:			n: NAVD				Date/Time Finis		_			2019 at 5:00 pm
Item	n. 201 it.	Casing		pler Cor	22,059,050,09	Boring Location: Adjacent to p of Rosemont - Ringoes Road	owerline ROW approx.	1100' southeast				_	434275 E: -74.971819 m: NAD 1983
Type Length (E4)	HW 5	SS 2	3	NQ2	Rig Make & Model: CME-55L0		Hammer Type	Dri	illing	j Flu	bit	Drill Rod Size:
Inside D	ia. (in.)	4	1.3			☐ Truck ☐ Tripod ☐ ATV ☐ Geoprobe	☐ Cat-Head Winch	☐ Safety ☐ Doughnut	□ B			•	Casing Advance
Hammer Hammer		140 30	14				Roller Bit	✓ Automatic	Y W	ater	Г		Mud Rotary
7101111101		- 00	1 50	<u> </u>	r i		☐ Cutting Head	<u> </u>	□ N	one ield		ete	
Depth/ Elev. (ft)	Sample No. / Interval (ft)	Rec. (in)	Sample Blows per 6"	Stratum Graphic		(Density/cons	Il Identification & Desc sistency, color, Group N article size, structure, m s, geologic interpretation	lame, oisture,	Dilatancy	5	Plasticity	£	Remarks
260	S-1 0.0'- 2.0'	19	2 4 12 12		ML	Very stiff, reddish brown SI	LT, trace coarse to fine Sar	nd, moist (ML)	S	_	NP		PP = 4.0 tsf
5	S-2	14	6		ML	Stiff, reddish brown SILT, w	rith coarse to fine Sand, tra	ce coarse to fine	s	L	NP	L	PP = 1.0 tsf
	5.0'- 7.0'		4 5 7			Gravel, moist (ML)							
 10	S-3	16	49		ML	Hard, reddish brown SILT, v Gravel, moist (ML)	with coarse to fine Sand, tra	ace coarse to fine		-	1	-	
250	10.0'- 12.0'		56 64 87			Gravel, moist (WIL)							
	S-4	9	60			13.5 Very dense, reddish brown	DECOMPOSED ROCK fra	gments, moist	-				
	15.0'- 17.0'		50/3"			16.0		7			The second second		
-		Water Le	vel Data			Sample Type	Notes:						
Date		Elapsed	Dep	th in fee	to:	O Open End Rod	PP = Pocket Penetr	rometer					
4/3/19 4/4/19 4/5/19	8:30 8:30 9:00	Time (hr) - - -	4.0 4.0 4.0 4.0	90.0 220.0	Water 16.1 16.9 19.45	T Thin-Wall Tube U Undisturbed Sample S Split Spoon Sample G Grab Sample	TV = Torvane						Poster No. P. 55
Field Tes	t Legand	l· Dilat	ancy:	N - No	ne C.	Slow R - Rapid P	acticity: ND N-	n Plantia I I		NA- 1	Ji		Boring No.: B-55
. ioiu 165	. Legenu		ghness:				lasticity: NP - No ry Strength: N - None	n-Plastic L - Low e L - Low M - M	M - edium	ivied i H	ııum I - H	ı H ligh	- High VH - Very High
NOTES:	1.) "ppd" de 3.) Maximur	notes soil s m Particle S	ample ave Size is dete	erage diame ermined by	etral pocke direct obse	et penetrometer reading. 2.) "ppa ervation within limitations of sample	" denotes soil sample avera	age axial pocket pene	etrome	ter re	eadir	na	

MOT		ALC	M	М					CORE BORING LO	OG								RING NO.: B-55 age 1 of 9
Project	t:		PennEa	st Pipe	line Pr	oject				Project No.:			3754					
Locatio			Wick C	eek, S	tocktor	ı, NJ				Project Mgr:			tsal S					
Client:		_	PennEa	st Pipe	eline				The state of the s	Field Eng. St			le Ha					
Drilling	Co.:	_	Craig T	est Bor	ing Co	., Inc.				Date/Time S		-	ril 2,			0.00000		
Driller/			Nick Be	ehler /I	-					Date/Time Fi		_	ril 4,					
Elevatio	n: 261	ft.	0			al Datur		/D 1988 ore Bit	Boring Location: Adjacent to powerline Re of Rosemont - Ringoes Road	OW approx. 11	00' southe	ast _{Co}	ord.:	N: 4	40.43	4275	E: -7	4.971819
Item Type		+	Cas HV			e Barrel NQ2		. Diamond	Horizontal Datum: NAD 1983			Dr	illing	Meth	od: V	/irelir	ne	
Length (5			5		3.25	Rig Make & Model: CME-55LC									
Inside D			4		_	2.0		2.0	Visual Identification, Description and	d Remarks								
Depth/	Avg Core		. Run/	Rec	RQD			Stratum	(Rock type, colour, texture, weath	nering,	Depth		Dis	conti	nuitie	S		Damanda
Elev.	Rate	Dept (ft)	(Box) No.	(in. / %)	(in / %)	Rock	Core	Graphic	field strength, discontinuity space optional additional geological obser		(ft.)	(See	Legend for	or Rock (Description	n System	n)	Remarks
(ft)	(min /ft)	3555.00	INO.	70)	/0)	Hard.	Weath	l	SEE TEST BORING LOG FOR OVERBURD		1		Dip					
$\overline{\Delta}$		16.0				Tialu.	VVCau	×××	SILTSTONE, reddish brown, fine grained, h	nighly								
	2.6	10.	1					× × × × × ×	weathered, weak, very close to close space discontinuities	ed							Ì	
∇								× × × × × ×	16' - 20' Fractured zone									
	1.8							× × × × × ×										
1	1.0			48	0			X X X X X X										
r			R-1	100%	0%	R2	Н	$\times \times \times$										
1	2							x x x										
-	-	-						× × ×										
$\bar{\Delta}$	3.6				1		2	× × ×										
	5.0	20.	0					$\times \times \times$										
-20		20.	0					× × ×	SILTSTONE, reddish brown, fine grained, r weathered, weak, extremely close to close	moderately								
	3.5							× × × ×	discontinuities	spaced								
240		-						× × ×	20' - 22.35' Fractured zone									
	4.5			0.	İ			$1 \times \times \times 1$					1					
							ĺ	× × × × × ×										
Г		1		59	15			× × × ×										
	1.8		R-2	98%	25%	R2	М	$\times \times \times$										
-	+	┨	3	10				$I \times \times \times I$			22.85	J	35	P,R	DG	Т	N	
	1.5			ł				× × × ×			23.20	J	30	P,R	DG	PO	N	
								× × ×			23.65	J	20	P,Sm	FR	PO	N	
								× × ×			24.07	J	25	U,R	DG	0	N	
	1.1	25	0					x x x	24.7' - 25' Fractured zone									
-25	-	25		-	+		-	$\times \times $	SILTSTONE, reddish brown, fine grained,	highly			1					
	4.4	20						$ x \times x $	weathered, weak, very close to close spac discontinuities	ced								No water return
	1	1						× × × × × ×	25' - 25.6' Highly weathered Clay seam					1				29.5 to 30 feet BGS
1	1.0							$\times \times \times$	25.6' - 28.9' Fractured zone									1803
1	4.9							x x x										1
-		1			١			× × ×										\$F
	5.7		R-3	59 98%	16 27%	R2	Н	× × × × × ×										
-	_	4						× × ×										
	5.6							× × ×										
	5.0							$I \times \times \times$			28.75	J	25	P,R	FR	0	N	1
Г								× × ×										
	17.1							X			29.35	J	45	P,R	FR	PO	N	
30	+-	-	0.0	+	+		-	⊣ ŝ ŝ ŝ	SILTSTONE, reddish brown, fine grained,	moderately								
	2.4	130	,.0					÷ ÷ ÷	weathered, weak, very close to close space discontinuities	ced					1			1
L								lê ê x	30.75' - 31.68' Highly fractured zone							1		
230								× × ×										
	2							× × ×	1.00									
+	+	1		9900018				× × ×	* # - W									
	1.4		R-4	59 98%	27 45%	, R2	М	× × ×	7, 9		32.30	J	30	P,Sn	n FR	PO	N	
-	1	1		1 3070	"			× × ×	32.8' - 34.3' Highly fractured zone		32.84	J	15	P,R	FR	РО	N	
	1.7							× × ×										
	1.7			1				× × ×				I						
		7						1 × × ×										
	1.4							Î X X X										
35	-	-	5.0	-	+		-	- × × ×	SILTSTONE, reddish brown, fine grained,	slightly								
	2.1		5.0					× × ×	weathered, medium strong, very close to									
ì	[2			1				× × ×	spaced discontinuities Calcareous inclusions throughout									
			_	Level			4.4-	Note										
Date	Т:	me	Elaps			h in fee Bottom	T	-										
		2000000	(hr)	Ca	sing	of Hole	vvate											
4/3/19		30			4.0	25.0	16.1											
4/4/19		:30	-		4.0 4.0	90.0	16.9											
4/5/18	1 9			丁										В	orino	No.:	B-	55

BORING NO.: MOTT M **CORE BORING LOG B-55** MACDONALD M (continued) Page 2 of 9 Visual Identification, Description and Remarks Depth/ ROD Run Core Rec (Rock type, colour, texture, weathering, Discontinuities Stratum Depth Rate Elev. (Box) (in. / Rock Core (in. / field strength, discontinuity spacing, Remarks (ft) Graphic (ft) (min No. %) %) optional additional geological observations) /ft) Hard. Weath Type Dip Rgh Wea Aper Infill 2.3 36.55 20 U,R FR PO Ν 0 37.00 15 U,R FR Ν 36 60% 2.2 R-5 R3 SL 100% 1.9 38 68 10 U,R FR PO N 2.4 39.50 40 U,R FR PO N 40.0 -40 SILTSTONE, reddish brown, fine grained, slightly weathered, medium strong, close to moderate spaced 40.0 1.8 discontinuities Calcareous inclusions throughout 220 41.10 20 P,R FR Ν 22 41.45 15 FR PO N P,Sn 60 1.6 R-6 R3 SL 100% 62% 43.13 35 P,Sn FR T N 1.8 44.25 U,R FR PO 1.7 45.0 45 45.0 SILTSTONE, reddish brown, fine to very fine grained. slightly weathered, medium strong, very close to moderate spaced discontinuities 2.6 Calcareous inclusions throughout 46.10 25 FR T N P.Sn 3.5 46.70 DS PO 15 P,R N 3.8 R-7 R3 67% 47.55 40 PR FR PO N 47 97 50 P.R FR 0 N 3.6 4.3 49.30 20 FR PO 50.0 -50 SILTSTONE, reddish brown, fine grained, fresh, medium strong, close to moderate spaced 50.0 3.5 discontinuities Calcareous inclusions throughout 210 50.88 10 U.R FR N 3.6 51.55 R-8 FR 3.8 R3 98% 88% 53.20 PO N 40 P.Sm DS 3.7 4.1 54.38 U,R FR PO N 55.0 SILTSTONE, reddish brown, very fine grained, moderately weathered, medium strong, very close to close spaced discontinuities 55.55' - 56.15' Highly fractured zone 55.0 3.3 3.6 3.4 R-9 R3 57.35 45 FR P.R PO 57.7' - 58.4' Highly fractured zone 6.5 5.9 60.0 -60 SILTSTONE, reddish brown to gray, very fine grained, slightly weathered, medium strong, extremely close to 60.0 3.1 close spaced discontinuities 60.58 20 NOTES: PROJECT NO.: 353754 Boring No.: B-55

MOT1			М						CORE BORING LOG								RING NO.: B-55
MACI	DON	ALD		M					(continued)							Pa	age 3 of 9
epth/ lev. (ft)	Avg Core Rate (min		Run/ (Box) No.	Rec. (in. / %)	RQD (in. / %)	Rock	Core	Stratum Graphic	Visual Identification, Description and Remarks (Rock type, colour, texture, weathering, field strength, discontinuity spacing, optional additional geological observations)	Depth (ft.)	(Sec	Legend		Descrip	tion Syste		Remarks
	/ft)		140.	,,,	,,,,	Hard.	Weath		<u> </u>		Type				Aper T	Infill N	
200	3.3							× × × × × × × × × × × ×	61.75' - 63.2' Highly fractured zone	61.08	J	20	P,Sm P,R		PO	N	Short loss of water return at 62.5 feet BGS
	2.9		R-10	51 85%	28 47%	R3	SL	× × × × × × × × ×									
	5.6				21			× × × × × × × × × × × × × × ×	63.2' - 63.8' Sub-vertical fracture	63.50	J	75	P,R	FR	PO	N	
55	1.5	65.0 65.0							SHALE, gray, very fine grained, fresh, medium strong, very close to moderate spaced discontinuities								Water color change from reddish brown to gray at 66.5' BGS
	1.8									66.14	J	20	P,Sm	DS	РО	Fe	gray at 1111 1 1
	1.6		R-11	54 90%	46 77%	R3	FR			67.20	J	35		FR	PO PO	N	5
		1							68.35' - 69.25' Sub-vertical fracture	67.95 68.38	J	20	P,Sn P,R			Fe	No water return
	3.2								66.35' - 69.25' Sub-vertical nacture	69.00	J	20				Fe	69.5 to 70 feet BGS
70	2.6	70.0 70.0	_						SHALE, gray, very fine grained, slightly weathered, medium strong, very close to moderate spaced discontinuities 70.5 - 71.85 Fractured zone								
190	2.5				18				70.0 77.00 77.00 00.00	71.85	J	25	i P,Si	m FR	. 0	N	**
	1.7		R-1:	2 60 100%	32 53%	R3	SL		72.75' - 73.25 Fractured zone	73.27		30) P _i S	m FF	e PO	N	
	1.5									73.80					S PC	Fe	
	2.5	75.0							75.0	74.30 74.54	J					Fe SD	
75	1.3	75.0	0						SANDSTONE, light brown, fine to medium grained, slightly weathered, medium strong, close spaced discontinuities								
	1.2	:								76.27	7 J			R FI			
	1.4		R-1	13 60			SI			76.86 77.2					- 1		
	1.5	5								78.6 79.1			0 P.		s c		
-80	1.9	80.		-	-			× × >	80.0 SILTSTONE, reddish brown, fine grained, slightly weathered, medium strong, very close to close spaced	13.1							75
11	80 2							× × × × × × × × × × × × × × × × × × ×	GGGGRANAGG	81.2	.4	J 1	15 U,	Sm F	R 1	N	1
	1.0	-	R-	14 100	0 4:		s s	X	82 4' - 83 45' Fractured zone	81.7 82.3					R P	0 N	
	1.	-		100)% 72	70		× × × × × × × × × ×		83.4	13	J	20 F	P,R F	R (2 2	
	2		5.0					× × × × × × × × × × × × × × × × × × ×	84' - 85' Fractured zone								Water color
—85	2.	85	5.0					× × × × × × × × × × × × × × × × × × ×	weathered, medium strong, very close to moderate								change to reddish browr 85.5 feet BGS

MAC		ALD	М	M					CORE BORING LOG						_	279.51	ORING NO.: B-55 Page 4 of 9
Depth/ Elev. (ft)	Avg Core Rate (min /ft)	Depth (ft)	Run/ (Box) No.	Rec. (in. / %)	RQD (in. / %)	Rocl	k Core	Stratum Graphic	Visual Identification, Description and Remarks (Rock type, colour, texture, weathering, field strength, discontinuity spacing, optional additional geological observations)	Depth (ft.)	(Se		iscon				Remarks
	my				-	Hard.	Weath	< × ×		86.00	Туре	C. Salara		Wea	0.010000000	r Infill	
	2.5							< × × ×		86.35	J	10	P,R	27/3754	PO	N	
	2.6		R-15	54	34	R3	SL	< x x x x x x x x x x x x x x x x x x x									
	2.0		IK-13	90%	57%	I No	SL	× × ×		87.36 87.77	J	15	P,R P,Sm		PO PO	N N	
	3.1							X X X		88.50	J	45	P,Sm		Т	N	
	Nagaran							XXX		00.00		43	11,011	LIX	1	l N	
90 -	2.8	90.0						× × ×									
	2.2	90.0						x x x	SILTSTONE, reddish brown, fine grained, slightly weathered, medium strong, very close to moderate								
170								× × ×	spaced discontinuities								
	1.1							× × × × × ×		91.26	J	25	P,Sm	FR	PO	N	
Ī	1.4		R-16	60	32	R3	SL	× × × × ×	92.28' - 92.42' Clay seam	91.90	J	25	P,Sm	FR	т	N	
-			14-10	100%	53%	11.0	- GE	<pre></pre>	92.6' - 92.7' Weathered Clay seam								
	3.2							× × × ×		93.10	J	15	P,Sm	FR	Т	N	
6.5								× × × ×	94.2' - 95' Fractured zone								
95	2.1	95.0						××		94.20	J	20	P,R	FR	PO	N	
	2	95.0						x x	SILTSTONE, reddish brown, tine grained, slightly weathered, medium strong, close to wide spaced								
								× × × × × ×	discontinuities Calcareous inclusions throughout								
	1.2							× ×		96.24	J	10	P,Sm	FR	РО	N	
	1.2		R-17	60	47	R3	SL	× × × × ×									
,-				100%	78%	110	J.	× × × ×									
	2							× × × × × × × × × × × × × × × × × × ×									
1								× × × ×		98.83	J	15	U,Sm	FR	0	N	
00	2.4	100.0						× × × × ×	99.62' - 100' Highly fractured zone								
	1.5	100.0						×××	SILTSTONE, reddish brown to gray, fine grained, slightly weathered, strong, very close to wide spaced discontinuities								
160	\dashv							××	Calcareous inclusions throughout	101.10	200	40					
	1.3							× ×		101.10	J		P,Sm		Т	N	
I	1.5		R-18	60	53	R4	SL	× × ×		101.74	J	15	P,Sm	FR	Т	N	
+	\dashv			100%	88%		8.50	× × × × × × × × × × × × × × × × × × ×									
	1.2							× × × ×									
Ť	1.1							× × × × × ×		104.22	J	10	U,R	FR	PO	N	
05		105.0						× × .	105.0	1.04.22			J,K	i:iX	i-U	IN.	
	1.1	105.0							ARGILLITE, grayish brown, fine grained, fresh, very strong, close to wide spaced discontinuities								
+										105.81	ű	20	P,Sm	FR	т	N	
	1.1																
	1.2		R-19	58 97%	49 82%	R5	FR										
+				31 70	UZ /0	54,5850k				107.74	J	4.000	P,Sm	FR	т	N	
	0.9								e .	108.12	J	10	U,R	FR	0	N	_
t	2.9																
10		110.0															
	1.4	110.0							ARGILLITE, grayish brown, fine grained, fresh, very strong, very close to moderate spaced discontinuities 110' - 110.7' Sub-vertical fracture	110.35	v	85	P,R	FR	PO	Ca	
								11/1/2	Tro. r oud-vertical fracture	1				162			
									PROJECT NO.: 353754						lo.: E		

MOTI		A.I.D.	М	М					CORE BORING LOG								RING NO.: B-55 age 5 of 9
Depth/ Elev. (ft)	Avg Core Rate (min		Run/ (Box) No.	Rec. (in. / %)	RQD (in. / %)		k Core	Stratum Graphic	(continued) Visual Identification, Description and Remarks (Rock type, colour, texture, weathering, field strength, discontinuity spacing, optional additional geological observations)	Depth (ft.)		Dis		Descript	ion Syste	em)	Remarks
150	/ft)					Hard.	Weath	11.1111		110.93	J	10			PO	N	
	1.3		R-20	60 100%	53 88%	R5	FR			111.90	j j	1	P,R P,Sm	FR FR	T	Ca N	
	1.1	115.0							114.05' - 114.33' Fractured zone	114.05	J	5	P,R	FR	РО	N	
-115	1	115.0	+-						ARGILLITE, reddish gray, fine grained, slightly weathered, strong, close to moderate spaced discontinuities	115.73	J	30	P,Sm	FR	т	N	
	1.2								116.5' - 116.98' Sub-vertical fracture	116.75	J	35	P,Sm	FR	PO	N	9
	1		R-2	59 98%		R4	SL			117.40	J	80	P,R	FR	РО	N	
						İ				118.18	J	35	U,R	1			
A	1								119.47' - 119.95' Fractured zone	118.72	J	20	P,R	FR	PO	N	
—120	1.5	120. 120.	_					X	120.0 SILTSTONE, reddish gray to brown, fine grained, slightly weathered, strong, very close to moderate spaced discontinuities	120.65	J	40	P,R	FR	т	N	
140	1.4							× × × × × × × × × × × × × × × × × × ×		121.80 122.07		65 30					
-	1		R-2	100	0 45 0% 75°	R	4 S	× × × × × × × × × × × × × × × × × × ×	122.85' - 124.8' Fractured zone with sub-vertical fractures	5							
 125	1.1	125 125	_			*		× × × × × × × × × × × × × × × × × × ×	SILTSTONE, reddish gray, fine grained, slightly weathered, strong, very close to moderate spaced discontinuities 125' - 126.3' Sub-vertical fracture	125.7	5 J	85	5 P,I	R FI	R T	- N	
	1.	1								126.4	0 J	10	P,I	R F	R P	0 N	1
-		\dashv	R-	23 10	50 4 0% 78	-7 3% F	R4 5	SL	127.85' - 128.35' Sub-vertical fracture	127.7	.0 J	ŧ	i P,S	Sm F	R P	0 1	4
-	-	2						× × × × × × × ×	128.9' - 129.5' Sub-vertical fracture	128.9 129.2			0 P,S			0 0 1	N
 130	+	_	0.0	-			+	**************************************	SILTSTONE, reddish gray, fine grained, fresh, strong, close to wide spaced discontinuities	130.	04 3	J 1	0 P	,R F	R F	0 1	N
	130	.6						× × × × × ×									
-	+	1	R	-24		47 '8%	R4	FR X X X X X X X X X X X X X X X X X X X		132.	33	J	15 P,	Sm	FR	0	N
-	(0.9			•			× × × × × × × ×	₹ ₹ ₹ ₹	•							.4
—135	. 1		35.0 35.0		_				SILTSTONE, reddish gray, fine grained, slightly	134	.38	J	10 L	J,R	FR	PO	N
		0.9							weathered, strong, very close to close spaced discontinuities 135.7 - 136.65' Sub-vertical fracture	135	.60	J	20 P	,Sm	FR	РО	N
NOT	ES:								PROJECT NO.: 353754					Bor	ing N	lo.:B	-55

Depth/ CElev. (ft) (r	(min /ft) 1 0.8 0.9	Depth (ft)	Run/ (Box) No.		RQD (in. / %)	Rock	c Core	Stratum	(continued) Visual Identification, Description and Remarks (Rock type, colour, texture, weathering,			Di				P	age 6 of 9
(0.8		R-25			Hard.	Weath	Graphic	field strength, discontinuity spacing, optional additional geological observations)	Depth (ft.)		e Legen	d for Roo		iption Sys		Remarks
(0.9			54 90%	27 45%	R4	SL	× × × × × × × × × × × × × × × × × × ×	137.2' - 137.96' Highly fractured zone	136.70	Ј	15	P,R	FR	PO	N	
1	V2016/10/11 III							× × × × × × × × × × × × × × × × × × ×		138.46	J	20	P,Sm	FR	т	N	
120		140.0 140.0						× × × × × × × × × × × × × × × × × × ×	SILTSTONE with interbedded Sandstone, reddish brown, fine grained, moderately weathered, medium strong, very close to moderate spaced discontinuities Calcareous inclusions throughout								
	0.7		R-26	52 87%	25 42%	R3	м	× × × × × × × × × × × × × × × × × × ×	140' - 142.65' Fractured zone								
+	1.7			3.50				× × × × × × × × × × × × × × × ×		142.65	J	15	P,R	FR	PO	N	
1	1.7	145.0						× × × × × × × × × × × × × × × × × × ×		143.38	J	20	P,R	DG	0	CL	
145	2.1	145.0						× × × × × × × × × × × × × × × × × × ×	SILTSTONE, reddish brown, very fine grained, fresh, strong, close to wide spaced discontinuities Calcareous inclusions throughout	145.58	J	10	P,Sm	FR	Т	N	
+	1.8		R-27	59 98%	56 93%	R4	FR	× × × × × × × × × × × × × × × × × × ×									
-	1.9							* * * * * * * * * * * * * * * * * * *									
150	_	150.0 150.0						× × × × × × × × ×	SILTSTONE, reddish brown, very fine grained, fresh, strong, close to moderate spaced discontinuities Calcareous inclusions throughout	149.70	J		P,Sm	FR	PO	N	
-	2		D 00	60	49	12270		× × × × × × × × × × × × × × × × × × ×		150.75	J		P,Sm U,R	FR	PO	N	
+	2.5		R-28	100%	82%	R4	FR	× × × × × × × × × × × × × × × × × × ×		153.30	J	30	P,R	DG	0	CL	
155	_	55.0 55.0		1				× × × × × × × × × × × × × × × × × ×	SILTSTONE, reddish brown, very fine grained, slightly weathered, strong, very close to close sapced								
	2.4							× × × × × × × × × × × × × × × × × × ×	discontinuities	155.77 156.40				FR FR	T PO	z z	
	1.3		R-29	60 100%	33 55%	R4	FR	× × × × × × × × × × × × × × × × × × ×	157' - 158.73' Fractured zone	157.00	J	5 (U,Sm	FR	PO	N	
1.	1.3	60.0	X		•			× × × × × × × × ×		159.00	J	45	U,R	FR	РО	N	
1.	.9	60.0						× × × × × × × × × × × ×	SILTSTONE, reddish brown, fine grained, fresh, strong, close to moderate spaced discontinuities Calcareous inclusions throughout	160.48	J	25 F	P,Sm	FR	РО	N	

B-55 MOTT M **CORE BORING LOG** MACDONALD M Page 7 of 9 Visual Identification, Description and Remarks Discontinuities (Rock type, colour, texture, weathering, Core Run Rec RQD Depth Depth/ Remarks Stratum Rock Core field strength, discontinuity spacing, (in. / Elev. Rate (Box (in. / Graphic (See Legend for Rock Description System) (ft) optional additional geological observations) %) `%) No. (ft) (min Type Dip Rgh Wea Aper Infill /ft) Hard. Weath P,R 161,40 60 1.2 60 FR R-30 R4 87% P,R FR PO N 162.95 163.40 30 2 1.1 PO N 15 U,R FR 165.0 SILTSTONE, reddish brown, very fine grained, fresh, strong, close to wide spaced discontinuities 165 165.0 2.6 N PO 166.00 J 5 U,R FR 2.6 10 FR РО N 166.85 FR R-31 R4 1.2 1.9 FR PO 70 P.R 169.20 J 170.0 SILTSTONE, reddish brown, very fine grained, slightly weathered, strong, close to moderate spaced 170.0 0.9 discontinuities Calcareous inclusions throughout 171.26 P.Sn FR Т Ν 1.5 55 92% R4 1.2 R-32 100% Ν 172.75 15 P.Sr FR PO 173.2' - 173.58' Highly fractured zone 1.7 PO CL DG 174.35 .1 10 P.R 1.4 175.0 175 SILTSTONE, reddish brown, very fine grained, fresh, 175.0 strong, close to moderate spaced discontinuities 3.2 FR PO Ν 10 P,Sm 176.06 3.4 FR R4 3 R-33 N 177.70 20 P.Sm FR Ν 178.33 15 FR PΩ 2.8 FR N 15 P,Sm 2.1 179.50 180.0 180 SILTSTONE, reddish brown, very fine grained, slightly 180.0 weathered, medium strong, close to moderate spaced 2.1 discontinuities Calcareous inclusions throughout Ν P,Sm FR 35 181.10 1.6 181.85 30 P,Sm FR PO Ν Ν U,R 182.30 50 R3 1.2 R-34 N 100% 75% 182.65 15 U,R FR T N 183.15 30 Sn FR 2 FR PO N 184.30 U,R FR PO N 185.0 185 SILTSTONE, reddish brown, very fine grained, slightly 185.0 weathered, medium strong, very close to moderate 2.6 spaced discontinuities Boring No.: B-55 PROJECT NO.: 353754 NOTES:

BORING NO .:

MOT MAC		IALD	М	М					CORE BORING LOG								PRING NO.: B-55 age 8 of 9
Depth/ Elev. (ft)	Avg Core Rate (min /ft)		Run/ (Box) No.	Rec. (in. / %)	RQD (in. / %)		Core	Stratum Graphic	Visual Identification, Description and Remarks (Rock type, colour, texture, weathering, field strength, discontinuity spacing, optional additional geological observations)	Depth (ft.)	_	e Legen	-	k Descr	ption Sys	tem)	Remarks
						nard.	Weath	× × ×			Туре	Dip			Арег	Infill	
	1.6							× × ×	186.3' - 187' Fractured zone	186.25	J	15	U,R	FR	PO	N	
	2.3		R-35	59 98%	45 75%	R3	SL	× × × × × × × × × × × × × × × × × × ×	187.5' - 187.8' Highly fractured zone	187.00 187.80	J	10	P,Sm		PO	N	
	2.6							× × × × × ×				15	P,R	(1000)	0	N	
	2.9	400.0						× × × × × × × × × × × × × ×		188.40	J	15	P,R	FR	PO	N	
 190 -		190.0 190.0		-			_	× × × × × × × × ×	SILTSTONE, reddish brown, very fine grained, slightly								
	1.8							× × ×	weathered, strong, very close to moderate spaced discontinuities								
_ 70 _	1.9							<pre></pre>		191.05	J	30	P,Sm	FR	o	N	
	3.1		R-36	60 100%	50 83%	R4	SL	x x x x x x x x x x x x x x x x x x x		192.48	J	5	P,Sm	FR	PO	N	
	2.3							< × ×		193.64	Si .	40	D.C-		DC.	,	
Ī								< x x x x x x x x x x x x x x x x x x x		193.64	J	40 5	P,Sm P,Sm	FR FR	PO PO	N	
 195	2	195.0						< × ×	194.5' - 195' Highly fractured zone								
190 -	1.8	195.0						< × × × × × × × × × × × × × × × × × × ×	SILTSTONE, reddish brown, very fine grained, fresh, strong, close to wide spaced discontinuities								
	1.5							< × ×	o, and a special discontinuing	195.50	J	30	U,R	FR	РО	N	
	2							× × ×									
-								× × ×									
_	1.3		R-37	59 98%	48 80%	R4	FR										
	1.4							2 × ×									
	1.6							X X X		199.00	J	10	U,R	FR	РО	N	
200 -	1.0	200.0						(X X									
	1	200.0	-					× × ×	SILTSTONE, reddish brown, very fine grained, fresh, strong, close to wide spaced discontinuities								
- 60									Calcareous inclusions throughout	200.90	J	20	P,Sm	FR	т	N	
	1.2							X X X		201.25	J	10	P,Sm		Т	N	
-: -				EO	E0.			××		201.92	J	15	P,R	FR	т	N	
	1.3		R-38	59 98%	52 87%	R4	FR	X X X									
1	1.6							× × ×									
_	1.0							× × ×		203.72	j	20	P,R P,Sm	FR	PO	N N	
	1.5							X X X		203.92	J	10	P,Sm	FR	PO	N	
—205 -		205.0 205.0						X	SILTSTONE, reddish brown, very fine grained, fresh,								
	2	_00.0						× × × × × ×	strong close to wide spaced discontinuities Calcareous inclusions throughout								
-								× × ×	anoughout.					13			
	1.6							× × ×									
-				60	54		1000	× × × × × × × × × × × × × × × × × × ×				2.27		100000	Agree :		
	1.2		R-39	100%	90%	R4				207.27	J		P,Sm	FR	PO	Ca	
	1.2							× × × × × × ×		207.83	J	10	P,Sm	FR	PO	N	
-			(6)					× × ×		208.60	J	10	P,Sm	FR	PO	N	-
	1.5							× × ×		209.24	J	10	P,R	FR	PO	N	
—210 -		210.0 210.0						××	SILTSTONE, reddish brown, very fine grained, fresh,								
	1.6	210.0						X X X X X X X X X X X X X X X X X X X	strong, very close to moderate spaced discontinuities Calcareous inclusions throughout	210.55	J	30	P,Sm	FR	т	N	
NOTES:			Y					× ×	PROJECT NO.: 353754							3-55	
e Andrés Addi					7.00								ابات	my I	10	,-JJ	

мотт	Γ		M							CORE BORING LOG						_		RING NO.: B-55 age 9 of 9
Depth/ Elev.	Avg Core Rate (min			Rec. (in. / %)	RQD (in. / %)	Rock	Core	Stratum Graphic	٧	(continued) Visual Identification, Description and Remarks (Rock type, colour, texture, weathering, field strength, discontinuity spacing, optional additional geological observations)	Depth (ft.)	(See	e Legend	sconti	Descript	tion Syste	m)	Remarks
50	`/ft)					Hard.	Weath	× × × × ×									N	
	1.7		R-40	60 100%	44 73%	R4	FR	**************************************		213' - 213.25' Fractured zone	211.46 211.66	J J	10	P,Sm P,Sm	FR FR	PO	N	
	1							× × × × × × × × × × × × × × × × × × ×			214.22	J	5	P,Sm	FR	Т	N	
215	1.2	215.0	_					× × × × × × × × × × × × × × × × × × ×		SILTSTONE, reddish brown, very fine grained, slightly weathered, strong, very close to moderate spaced discontinuities 215' - 216.3' Fractured zone								
	1.3							× × × × × × × × × × × × × × × ×			047.00	J	20	P,Sn	FR	Т.	N	
	2.5	+	R-4	100%	43 72%	R4	SL	× × × × × × × × × × × × × × × × × × ×	\ \ \ \ \		217.33		20					
	2.1							× × × × × × × × × × × × × × × × × × ×	×		219.30						N	
—220		220	.0					X X X	× 220	6.0 End of boring at 220 feet BGS Borehole grouted with cement and bentonite holeplug.								
- 40	0-																	
—225	-																	
-230																		
-	30																	
_																		
							e											
235	,																	
	TES:									PROJECT NO.: 353754					Bor	ring N	lo.: B	-55

Figure B-55.1 B-55 Box 1 R1-R4 Dry

Figure B-55.2 B-55 Box 1 Runs 1-4 Wet

мотт м		PennEast Pipeline Project	BORING NO.:
MACDONALD	М	Rock Core Photographs	B-55

Figure B-55.3 B-55 Box 2 Runs 5-8 Dry

Figure B-55.4 B-55 Box 2 Runs 5-8 Wet

PennEast Pipeline Project

Rock Core Photographs

BORING NO.:

Figure B-55.5 B-55 Box 3 Runs 9-12 Dry

Figure B-55.6 B-55 Box 3 Runs 9-12 Wet

PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-55.7 B-55 Box 4 Runs 13-16 Dry

Figure B-55.8 B-55 Box 4 Runs 13-16 Wet

PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-55.9 B-55 Box 5 Runs 17-20 Dry

Figure B-55.10 B-55 Box 5 Runs 17-20 Wet

PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-55.11 B-55 Box 6 Runs 21-24 Dry

Figure B-55.12 B-55 Box 6 Runs 21-24 Wet

PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-55.13 B-55 Box 7 Runs 25-28 Dry

Figure B-55.14 B-55 Box 7 Runs 25-28 Wet

PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-55.15 B-55 Box 8 Runs 29-32 Dry

Figure B-55.16 B-55 Box 8 Runs 29-32 Wet

M

PennEast Pipeline Project

Rock Core Photographs

BORING NO.:

Figure B-55.17 B-55 Box 9 Runs 33-36 Dry

Figure B-55.18 B-55 Box 9 Runs 33-36 Wet

MOTT M PennEast Pipeline Project BORING NO.:

MACDONALD M Rock Core Photographs B-55

Figure B-55.19 B-55 Box 10 Runs 37-40 Dry

Figure B-55.20 B-55 Box 10 Runs 37-40 Wet

PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-55.21 B-55 Box 11 Run 41 Dry

Figure B-55.22 B-55 Box 11 Run 41 Wet

PennEast Pipeline Project

Rock Core Photographs

BORING NO.:

IOTT		М.	_				SOIL	BORING LO	G					BORING NO.: B-56
IACD	ONALD										25	375	1	Page 1 of 1
oject:	1000	PennEast						-	Project No.:				4 Sha	ah
cation		Wick Cree		on, NJ		<u> </u>	in the same		Project Mgr: Field Eng. Staff:					Rajah
ient:		PennEast		- · ·	<u> </u>		4 221		Date/Time Start					018 at 9:33 am
illing (Craig Tes			E44: 0	NICO.			Date/Time State					018 at 2:30 pm
iller/He	elper: _ 166 ft.	Nick Beel	al Datum				Location: Adjacent to drive	reway		Coord	i.:	N: 4	0.43	32255 E: -74.970402
1	100 11.	Casing		ler Core		•								: NAD 1983
е		HW	SS		VQ2		ake & Model: CME-55LC	Cat-Head	Hammer Type ☐ Safety	Drill ☑ Be			OI .	Drill Rod Size: Casing Advance
igth (ft) ide Dia.		5	1.37	5	5 2.0	☐ Truc	J	Winch	☐ Doughnut	☐ Po	lyme	er		Mud Rotary
mmer V	Vt. (lb.)	140	140		-	✓ Train	ck 🗆 Air Track 🗹	Roller Bit	Automatic	₩ Wa				
mmer F	all (in.)	30	30			☐ Skid		Cutting Head				Test	s	
epth/	Sample		Sample		USCS	3	Visual - Manual	Identification & Description & Color, Group N	cription		σ ₀	T	gt.	5
lev.	No. / Interval	Rec. (in)	Blows	Stratum Graphic	Group		constituents nar	icle size structure, m	oisture.	Dilatancy	Toughness	Plasticity	Strength	Remarks
ft)	(ft)	(,	per 6"		Symbo	ווכ	optional descriptions	, geologic interpretation	on, Symbol)	Dilat	Toug	Plas	5	
_	S-1	6	6	711/2			12" - TOPSOIL with roots			-	-	-	-	
	0.0'- 2.0'		4	11. 11.		1.0								
-	J.U - Z.U	1	2		1	1.0				-	-	-	-	Fill approximately 1 to 4 feet BGS.
	1.0'-'	12	5											
+	S-2	2	8		ML		Very stiff, Reddish brown SIL	T, moist (ML)		S	L	L	L	Advanced casing to 3.5 feet BGS.
	10000000		15					20 10						
+	2.0'- 4.0'		15											
			16											
1	- 0.0	40			ML		Stiff, Brownish yellow SILT, t	race Sand. moist (ML)		s	L	L	N	
∇	S-3	18	5 6		IVIL		oun, brownish yellow SiLT, t	.aso ca.a, most (mr.)						
,	4.0'- 6.0'		7											
			8											V
<u></u>								U.T. t Oc //	41.\	s	L	L		
- 160	S-4	22	5		ML		Very stiff, Brownish yellow S	ILT, trace Sand, moist (N	/IL)	"	-	-	-	
	6.0'- 8.0'		8 10											
1			12											
Ţ ↓														0
* †	S-5	14	7]	ML		Very stiff, Brown SILT with I	ecomposed Rock fragm	ents, moist (ML)	N	M	NP	N	Gravel zone at 8 feet BGS. Advanced casing to 8.5 feet BGS
Ì	8.0'- 10.0'		8											16
1			11 23											
7														
10	S-6	14	13	1	ML		Very stiff, Reddish brown St	LT with Decomposed Ro	ck fragments,	N	M	NP	N	
	10.0'-		20				moist (ML)							
+	12.0'		22 13											
			13								1		-	
1				1										
						40	=							
					-	_ 13.	Very dense, Reddish brown	Decomposed Rock frag	ments, dry	-	-	-	-	Advanced casing to 13.5 feet BG
-	13.5'-'						•	_ 12						
15 -	S-7	6	59/6"							N	М	NF	N	
		"	55/0											
150	15.0'- 17.0'													
				_	-	17.	Top of Rock at 17 feet BGS							
							See Rock Coring Log.	••						N.
	-	1												
				31										
112		1												1
						\perp		l Nata-:					L	
			evel Dat	a epth in fe	eet to:	+	Sample Type	Notes: PP = Pocket Pen	etrometer					
Date	Time	Elapsed	Bot. o		m	- C	Open End Rod	TV = Torvane	ica Official					
		(hr)	Casing	of Ho	le wa	'	Thin-Wall Tube	50 Uni 1000 100 100 100 100 100 100 100 100 1						
/10/18	10:16	0:00	8.5 13.5	10.0 48.0										
/11/18 /12/18	8:30 8:35	0:00	13.5	110.0) 4.	5 5		1						
/13/18		0:00	13.5	138.0) (3 0	Grab Sample							Boring No.: B-56
	1				N	- Clau	D D 1	Disetisibu ND	Non-Plastic L - L	ou M	- 1/	ledit	ım	H - High
	est Leger	nd. Dil	atancy:	N -	None :	ייחוכי - כ	vR-Rapid F	Plasticity: NP -	Non-Plastic L - L	LOW IV	- 10			h VH - Very High

MOT MAC		ALD	М	М					CORE BORING L	OG							41,400~0	B-56
Project Locati Client: Drilling	on:		Wick C PennE	reek, S ast Pipe	eline Pr Stocktor eline ring Co	n, NJ				Project No.: Project Mgr: Field Eng. S Date/Time S	: itaff:	V:	53754 atsal hileer	Shah ban F	Rajah			age 1 of 6
Driller	/Helpe	r: _]	Control of The	- 60 pc - 1	Miles N	leipert/E		- Company of the last of the l		Date/Time F			pril 13	200 000 000	Market I al	440 T V W W A A		
Elevatio Item	n: 166	ft.	Cas	ing		cal Datu e Barrel		VD 1988 Core Bit	Boring Location: Adjacent to driveway		27-100	C	oord.	: N:	40.4	3225	5 E: -7	74.970402
Type Length	(ft)	+	H\ 5			NQ2 5	Imp	3.25				Di	rilling	Met	hod:	Wirel	ine	
Inside D	ia. (in.)	I	4			2.0		2.0	Rig Make & Model: CME-55LC				5)					
Depth/ Elev. (ft)	Avg Core Rate (min	Depth (ft)	Run/ (Box) No.	Rec (in. / %)	RQD (in / %)	Rock	c Core	Stratum Graphic	Visual Identification, Description an (Rock type, colour, texture, weath field strength, discontinuity spa optional additional geological obser	nering, cing,	Depth (ft.)			scont				Remarks
A STATE OF THE STA	`/ft)		1900000	,		Hard.	Weath		SEE TEST BORING LOG FOR OVERBURD		-	Type	Legend	_	_	_	_	
. 71	1.37	17.0			16 m			× × × × × × × × × × × ×	SILTSTONE, Reddish brown, fine grained, weathered, very weak to weak, close space discontinuities	highly ed								
	2.26		R-1	36 100%	11 31%	R1	Н	× × × × × × × × ×			17.90	J	70	S,R	DE	MW	ML	
	2.08	20.0						× × × × × × × × ×	18.9' - 19.3' Residual soil to completely wea	athered rock	19.55	J	10	S,R	DE	PO	ML	
-20 -	1.26	20.0			n			× × × × × × × × ×	20' - 22.45' SILTSTONE, Reddish brown, fi moderately weathered, weak to medium str spaced discontinuities	ne grained, ong, close								
	1.23							× × × × × × × × ×			21.20	J	35 40	S,R S,R	DE DE	PO PO	ML ML	
	1.20		R-2	56 93%	22 37%	R2	м	× × ×	22.5 22.45' - 25' SANDSTONE, Reddish brown to coarse grained, moderately weathered, v	to gray, fine		veil.						
0=	1.40								medium strong, very close spaced discontir	nuities	23.20	J	55	S,R	DE	PO	N	
뒫	1.02	25.0			11				24' - 25' Coarse Sandstone									
-25 -	1.27	25.0							SANDSTONE, Reddish brown to gray, fine grained, moderately weathered, weak to me strong, very close spaced discontinuities	to coarse edium						300000000000000000000000000000000000000		
140	1.35							• • • •	25' - 30' Fractured zone									
	1.36		R-3	58 97%	4 7%	R2	М		26.57' - 27.3' Coarse grained Sandstone									
15	0.50								ž.									
	1.40	30.0		21														
-30 -	1.15	30.0							30' - 33.2' SANDSTONE, Reddish brown to to coarse grained, moderately weathered, w medium strong, very close to close spaced discontinuities	veak to								
	1.17																	
	1.01		R-4	59 98%	12 20%	R2	М											
35 35	1.13							× × × × × ×	33.2 33.2 35 SILTSTONE, Reddish brown to grained, moderately weathered, weak to me strong, very close spaced discontinuities	gray, fine edium	33.30	J	80	S,R	DS	т	N	
-35 -	1.30	35.0						× × × × × × × × ×			34.40	J	85	S,R	DS	т	N	
	1.36	35.0						× × × × × × × × ×	SILTSTONE, Reddish brown, fine grained, weathered, medium strong, very close to cle discontinuities	moderately ose spaced								
130	1.36							× × × × × × × × ×	•	ě	36.00 36.65	J	35 33	S,R S,R	DS DS	T T	N N	
		$\overline{}$	later L lapsed	evel Da		in feet	to:	Note										
Date 4/10/18	Tim 10:1	6	Time (hr)	Bot. Casi	of Bo	Hole 10.0	Water 9.9			-								
4/11/18 4/12/18 4/13/18	8:30 8:35 8:30		0:00 0:00 0:00	13.5 13.5 13.5	5 1	18.0 10.0 38.0	8.0 4.5 6.0							-			3-56	

мот			М						CORE BORING LOG								B-56
MACI	Avg	ALD		M				Т	(continued) Visual Identification, Description and Remarks			Di	scont	in: :it:	95	P	age 2 of 6
Depth/ Elev.	Core Rate	Depth (ft)	Run/ (Box)	Rec. (in. /	RQD (in./	Rock	Core	Stratum Graphic	(Rock type, colour, texture, weathering, field strength, discontinuity spacing, optional additional geological observations)	Depth (ft.)	(See		for Rock			tem)	Remarks
(ft)	(min /ft)		No.	%)	%)	Hard.	Weath	×××	optional additional geological observationsy	37.00	Туре		Rgh S,R				
	1.50		R-5	60 100%	32 53%	R2	М	× × × × × × × × ×									
	2.00							× × × × × ×		38.00	J	68	S,R	DE	PO	ML	
_	2.00							X X X X X X X X X		39.10	J	50	s,R	DS	РО	ML	
	2.03	40.0						× × × × × ×									
 40	2.10	40.0						× × × × × ×	SILTSTONE, Reddish brown, fine grained, moderately weathered, weak to medium strong, very close to close spaced discontinuities	40.60	J	0	S,R	DS	т	N	
-								× × × × × × × × ×									
	2.15						99	× × × × × ×	41.7' Color transition from reddish brown to gray	42.10	J	50	S,R	DS	T	N	
	2.15		R-6	60 100%	38 63%	R3	М	× × ×	42.7 42.7' - 44.1' SANDSTONE, gray coarse to fine grained,	42.10		00					.
-	2.20								moderately weathered, weak to medium strong, close spaced discontinuities	43.30	J	53	S,R	DS	т	N	
-	2.20							* * * ×	44.1 44.1' - 44.7' SILTSTONE, Gray								
	2.05	45.0						× × × × × ×	45.0 44.7' - 45' Color transition from gray to reddish brown	44.70	s	95	P,Sn	DS	PC	Fe	Loss of water at
— 45	2.13	45.0							SANDSTONE, Reddish brown to gray, coarse to fine grained, moderately weathered, weak to medium strong, close spaced discontinuities								approximately 46.5 feet BGS.
120		1															5.8
-	2.20							:::	46.5' - 47.5' Fractured zone								
	2.00		R-7	60 100%	45 75%	R3	М		y. 2	47.50	J	85	S,R	DS	PC	N	
	2.50							• • •	48,5' - 49' Siltstone interbedded with Sandstone								*
-	12.00	-							48.5' - 49' Slitstone interbedded with Sandstone 49' Fractured vein at 85 degrees								
50	2.30	50.															
-50	2.33	50.	0						SANDSTONE, Reddish brown to gray, coarse to fine grained, slightly weathered, medium strong, very close to close spaced discontinuities								
-										51.40) J	5	S,F	R FI	₹ Т	N	
-	1.30	<u>'</u>						77.777	52.0 MUDSTONE, Reddish brown, highly weathered	52.00		0					Loss of water from 52 to 53 feet
	5.2	3	R-8	36 60%	24 40%		М		52' - 55' Fractured zone	15							BGS.
	5.3	53.	0														
-	+	+															0 0
— 55	5.1	55.	_						MUDSTONE, Reddish brown, fine grained, slightly								
	2.4	55	.0						weathered, medium strong, very close spaced discontinuities	55.0	0 J		0 S,	, E	R .	r N	
11									Calcite veins and pockets throughout 55.5' Calcite infill	55.8 56.3			0 S,		2000	T N	
-	2.3	_															
	2.2	5	R-	9 58	68°	_% R3	SI			57.4	0 J	1	5 S,S	Sm F	R	Т	1
	2.3	7															
-	+									58.8	10 J	5	55 S	R F	R	ТС	a
-60	2.4	60	.0				-		MUDSTONE, Reddish brown, fine grained, slightly				†				1000
) "	2.		0.0			T.			weathered, weak to medium strong, very close spaced discontinuities								
	2.5	20							Calcite veins throughout	61.2							Ca N
-	2							1.11							\perp		
NOTE	≣S:								PROJECT NO.: 353754					Bori	ng N	э.: В -	-56
1																	

MACI		ALD	M	M					CORE BORING LOG								ORING NO.: B-56
Depth/ Elev, (ft)	Avg Core Rate (min /ft)	Depth (ft)	Run/ (Box) No.	Rec. (in. / %)	RQD (in. / %)	***************************************	Core	Stratum Graphic	Visual Identification, Description and Remarks (Rock type, colour, texture, weathering,	Depth (ft.)		e Legeno	for Roc	tinuit k Descrip	otion Sys	tem)	Page 3 of 6 Remarks
			Vacant need	57	48		Weath		9	61.95	Type J	Dip 5	Rgh U,R	Wea FR	Aper T	Infill N	
	2.30		R-10	95%	80%	R2	SL			62.90	J	50	S,Sm	FR	Т	N	
	2.45	65.0								64.00	J	10	S,R	FR	т	ML	
100	2.15	65.0						× × × × × × × × × × × × × × × × × × ×	65.0 65' - 67.1' SILTSTONE, Reddish brown, fine grained, moderately weathered, weak to medium strong, very close spaced discontinuities	65.40	J	80	S,Sm	FR	т	N	66.8' - 67.15' Highly Fracture zone
100	2.30	67.0						× × × × × × × × ×	67.1 66.8' - 67.15' Highly Fractured zone								
1	2.15	57.5	R-11	60 100%	26 43%	R2	М	• • • •	67.1' - 68.7' SANDSTONE, Reddish brown to gray, fine grained, moderately weathered, medium strong, extremely close spaced discontinuities	67.10	J	40	S,Sm	FR	Т	N	
i -	3.00	69.0						× × × × × × × × × × × × × ×	68.7 - 70' SILTSTONE, Reddish brown, fine grained, moderately weathered, weak to medium strong, very close spaced discontinuities	68.75 69.20	J	50 60	S,R S,Sm	FR FR	T T	N ML	
70	3.00	70.0						× × × //. //////////////////////////////////	70.0 MUDSTONE, Reddish brown, fine grained, moderately weathered, weak to medium strong, very close spaced discontinuities	70.55	J	85	S,R	DS	Ŧ	N	Iron stains at e of breaks.
	2.50								71' - 72.6' Interbedded gray Siltstone	71.00	J	45	S,R	FR	т	N	
	2.30		R-12	60 100%	37 62%	R2	м			72.95	J	40	S,R	FR	т	N	
	3.00									73.55	J	5	S,R	FR	T	N	
5 -	2.15	75.0 75.0							MUDSTONE with interbedded Siltstone, Reddish brown, fine grained, fresh to moderately weathered, weak to medium strong, very close spaced discontinuities	75.65	J	50	S,R	FR	т	N	
1	4.00		R-13	60 100%	39 65%	R2	м			76.80 77.00 77.40))	55 45 30	S,R S,Sm S,R	FR FR	T T	2 2	
+	3.50								*	77.80 78.30) J	60 60	S,R S,R	FR FR	T T	N	
,	2.00	80.0					7.		80.0	78.93	J	20	S,R	FR	Т	N	
	2.43	80.0				8 0		× × × × × × × × × × × × × × × × ×	SILTSTONE, Reddish brown, fine grained, fresh to moderately weathered, weak to medium strong, very close spaced discontinuities	81.00	J	50	S,R	FR	Ŧ	N	
	3.15			60	31	(Jesus)	1 1	X X X		330	Ĭ	50	J,13		E	:19	
+	2.30	N .	R-14	100%	51%	R2		× × × × × × × × ×		82.40 82.80	1	45 45	S,R S,R	FR FR	T	N N	
1	3.00	DE 0						× × × × × × × × × × × ×		83.75 84.30	n n	50 60	S,R S,R	FR FR	т	N N	
5 -	2.52	85.0 85.0						× × × × × × × × × × × × × × × × × × ×	SILTSTONE, Reddish brown, fine grained, moderately weathered, weak to medium strong, very close spaced discontinuities	86.30	J	90	SR	FR	т	N	а
TES:								× × × × × ×	PROJECT NO.: 353754	86.50	j j	90 60	S,R S,R	FR FR	T	zz	

Avg Core Rate (min /ft)	Rur (Bo: No	x) (in . %	c. R	RQD (in. / (%)) 31 52%	Rock Hard.	Core	Stratum Graphic	(continued) Visual Identification, Description and Remarks (Rock type, colour, texture, weathering, field strength, discontinuity spacing,	Depth (ft.)		Dis	conti	nuitie	es		age 4 of 6 Remarks
3.15 2.50 90.	.0			31		· · · ·	1 1	optional additional geological observations)		Type		Rgh \			_	Leman 1/2
90.						М	× × × × × × × × × × × × × × × × × × ×		88.55 89.40	J	40		FR FR	т	N N	
4.00 4.10 3.50	R-1	16 10	0	54 89%	R3	SL		MUDSTONE with interbedded Siltstone, Reddish brown, fine grained, slightly weathered, medium strong, close spaced discontinuities	91.50 94.10 94.30	J	90 30 40	S,Sm S,Sm S,Sm	FR	T	Z ZZ	
8.10	7.0 R-	17 10	000%	45 74%	R2	М	× × × × × × × × × × × × × × × × × × ×	95' - 96.5' MUDSTONE, Reddish brown, fine grained, moderately weathered, weak to medium strong, very close spaced discontinuities 96.5' - 97.9' SILTSTONE, Reddish brown to gray, fine grained, slightly weathered, medium strong, close spaced discontinuities 97.9 97.9' - 100' SANDSTONE, Gray to reddish brown, fine grained, slightly weathered, medium strong, close spaced discontinuities	96.50	ı ı	10	S,R S,R	FR FR FR	т	2 2 2	
7.45 8.00 5.25	0.0 0.0 R-	.18 g	59 3%	59 98%	R3	SL		SANDSTONE, Reddish brown to gray, fine grained, fresh to slightly weathered, strong to medium strong, wide spaced discontinuities	103.00	J	30	S,R	FR	Т	7	Used
8.43 10 8.03 6.50 9.18	D5.0	-19 1	60 00%	53 88%	R4	FR		SANDSTONE, Reddish brown to gray, coarse to fine grained, fresh, strong, wide spaced discontinuities 107.55' - 108.2' Interbedded Siltstone	107.55	J	90	S,R	FR	т	Ca	approximately 4000 gallons of water from 48 to 110 feet BGS.
-110 	10.0							SANDSTONE, Reddish brown to gray, coarse to fine grained, fresh, very strong, wide spaced discontinuities	109.80	J	90	S,R	FR	Т	Ca	Five foot solid rock core.

MOT MAC		ALD	M	М					CORE BORING LOG								DRING NO.: B-56
epth/ Elev. (ft)	Avg Core Rate (min /ft)	Depth (ft)	Run/ (Box) No.	Rec. (in. / %)	RQD (in. / %)		Core	Stratum Graphic	(continued) Visual Identification, Description and Remarks (Rock type, colour, texture, weathering, field strength, discontinuity spacing, optional additional geological observations)	Depth (ft.)	(Se		scont				Page 5 of 6 Remarks
	8.27		R-20	60 100%	60 100%	Hard. R5	Weath FR				Туре	Dip	Rgh	Wea	Aper	Infill	
	10.31																
15 -	17.05	115.0 115.0			-				SANDSTONE, Reddish brown to gray, coarse to fine								Core bit chang
50	10.27								grained, fresh, very strong, wide spaced discontinuities								at 115 feet BG
-	3.50		R-21	60 100%	60 100%	R5	FR			116.50	МВ						
	3.15				2004/2011				*	118.60	МВ						
20 -	3.11	120.0 120.0							SANDSTONE, Reddish brown to gray, coarse to fine	119.60	МВ						
-	2.49	120.0							grained, fresh, very strong, wide spaced discontinuities								
	4.20		R-22	60 100%	60 100%	R5	FR										
	2.30			100%	100%		-		123' - 125' Coarse Sandstone								
:5 -	2.00	125.0							125.0								
40	3.13	125.0				R4		(1. TII),	125' -126' SANDSTONE, Reddish brown to gray, fine to coarse grained, fresh, strong 126.0 126' - 130' MUDSTONE, Reddish brown, fine grained,								
-	3.04 4.28		R-23	57	35		FR		fresh, strong to medium strong, close to very close spaced discontinuities				**				
-	2.45		10-23	95%	58%	TV4	FK										
	2.30	130.0															
	2.13	130.0							MUDSTONE, Reddish brown, fine grained, fresh to moderately weathered, close to very close spaced discontinuities	130.50	J	15 20	S,R S,R	FR FR	T T	N	Loss of water from 130 to 13 feet BGS.
,	3.34			60	56				131.7 131.7' - 135' SANDSTONE, Reddish brown to gray, fine grained, fresh, strong, close spaced discontinuities	131.90	n	30	S,R S,R		T	N N	
	6.04	133.0	R-24	100%	93%	R3	FR			133.00	J	20	S,R	FR	т	N	
ē	5.14	135:0								133.90 134.30	Ŋ	25 25	S,R S,R	FR FR	T T	N N	
30 -	6.15	135.0							SANDSTONE, Reddish brown to gray, fine grained, fresh, strong, very close to moderately spaced discontinuities	135.50	J	20	S,R	DS	0	N	
	6.51							• • •		136.40	J	30	S,R	FR	PO	N	
TES:									PROJECT NO.: 353754				Во	ring l	No.:	3-5(6

BORING NO .: MOTT M B-56 **CORE BORING LOG** MACDONALD M Page 6 of 6 (continued) Visual Identification, Description and Remarks Avg Discontinuities (Rock type, colour, texture, weathering, field strength, discontinuity spacing, Depth/ Core RQD Denth Stratum Remarks (in. / %) Rock Core Rate (Box) (in. / (ft) optional additional geological observations) (ft) No. (min %) Type Dip Rgh Wea Aper Infill /ft) Hard. Weath DS 0 137.00 25 S,R 60 R-25 SI FR N 40 S.R РО 137.50 100% 3.00 S,R FR Т 30 138.80 J 139' - 140' Fractured zone 2.42 140.0 SILTSTONE, Reddish brown to gray, fine grained, 140.0 fresh, strong, close to moderately spaced 2.47 discontinuities 140.60 J 15 U.R FR Т Ν 3.06 T S.R FR N 141.90 J 30 60 3.35 R-26 R4 FR 100% N S,R FR 30 142.70 2.52 2.45 145.0 -145 SILTSTONE, Reddish brown to gray, fine grained, 145.0 fresh, strong, wide spaced discontinuities 2.50 2.48 60 100% R4 R-27 2.49 100% 2.57 N 149.10 20 U,R DS 2.58 150.0 SILTSTONE, Reddish brown to gray, fine grained, fresh, strong, close to wide spaced discontinuities 150.0 3.45 60 FR R-28 R4 4.15 100% 87% 4.21 4.39 10 S,R FR Т Ν 155.0 -155 SILTSTONE, Reddish brown to gray, fine grained, 155.0 fresh, strong, very close to close spaced discontinuities 6.15 FR FR VT N 156.00 156.20 45 10 U,R U,R 8.33 156.70 156.90 10 20 S,R S,R FR FR N FR FR N 157.20 157.40 30 20 S,R S,R 9.01 R-29 R4 FR FR FR 2222 S,R S,R S,R S,R VT VT T 10 10 10 40 157.70 157.80 7111 8.28 N 30 P,R FR 158.70 7.28 160.0 160.0 160 End of Boring at 160 feet BGS. Borehole grouted with cement and bentonite holeplug PROJECT NO .: 353754 Boring No.: B-56 NOTES:

Figure B-56.1 B-56 Box 1 Runs 1-3 Dry

Figure B-56.2 B-56 Box 1 Runs 1-3 Wet

M

PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-56.3 B-56 Box 2 Runs 4-7 Dry

Figure B-56.4 B-56 Box 2 Runs 4-7 Wet

MOTT M MACDONALD

M

PennEast Pipeline Project

Rock Core Photographs

BORING NO.:

Figure B-56.5 B-56 Box 3 Runs 8-11 Dry

Figure B-56.6 B-56 Box 3 Runs 8-11 Wet

MOTT M M

PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-56.7 B-56 Box 4 Runs 12-15 Dry

Figure B-56.8 B-56 Box 4 Runs 12-15 Wet

MOTT M MACDONALD M PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-56.9 B-56 Box 5 Runs 16-19 Dry

Figure B-56.10 B-56 Box 5 Runs 16-19 Wet

MOTT M M MACDONALD M

PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-56.11 B-56 Box 6 Runs 20-23 Dry

Figure B-56.12 B-56 Box 6 Runs 20-23 Wet

MOTT M M M

PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-56.13 B-56 Box 7 Runs 24-27 Dry

Figure B-56.14 B-56 Box 7 Runs 24-27 Wet

MOTT M MACDONALD M

PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-56.15 B-56 Box 8 Runs 28-29 Dry

Figure B-56.16 B-56 Box 8 Runs 28-29 Wet

MOTT M MACDONALD M PennEast Pipeline Project

Rock Core Photographs

BORING NO.:

MOT	T DONAL	.D M	М			SOIL BORING LO	G					BORING NO.: B-57
Project Locati Client Drillin Driller	ion: :	Wick C PennEa Craig T	ast Pipelin reek, Stoo ast Pipelin est Boring ehler/Mile	ekton, NJ			Project No.: Project Mgr: Field Eng. Staff Date/Time Start	ted:	_ <u>+</u>	Kyle Mare	sal S Har ch 8	nsen , 2019 at 2:20 pm
	n: 204 ft.			m: NAVD		Boring Location: Adjacent to southeast end of drivewar	Date/Time Finis	1	_			1, 2019 at 12:15 pm 431134 E: -74.968926
Item		Casin		pler Cor			y	_				m: NAD 1983
Type Length	(ft)	HW 5	S:		NQ2 5	Rig Make & Model: CME-55LC ☐ Truck ☐ Tripod ☐ Cat-Head	Hammer Type		illing			Drill Rod Size:
Inside D	ia. (in.)	4	1.3	75	2.0	☐ ATV ☐ Geoprobe ☑ Winch	☐ Safety ☐ Doughnut	Ø B Ø P	olvn	ner	•	Casing Advance
	r Wt. (lb.) r Fall (in.)	140 30	30		-	☑ Track ☐ Air Track ☑ Roller Bit ☐ Skid ☐ ☐ Cutting Head	Automatic	V ∨				Mud Rotary
	Comple		I			The state of the s		□ N	ield		ete	
Depth/ Elev. (ft)	Sample No. / Interval (ft)	Rec. (in)	Sample Blows per 6"	Stratum Graphic	USCS Group Symbo	(Density/consistency, color, Group N	lame, oisture	Dilatancy -	s	Plasticity	듔	Remarks
= 0	S-1 0.0'- 2.0'	17	1 2 2 2		CL	0.1 \1" - TOPSOIL Soft, brownish yellow, Silty CLAY, trace fine Sand, moi	ist (CL)	S			_	PP = 0.5 tsf
200			Ť.			3.5						
—5 ·	S-2 5.0'- 7.0'	19	7 14 14		ML	Very stiff, reddish brown, Clayey SILT with Gravel and Sand, moist (ML)	coarse to fine	s	L	L	L	PP = 3.0 tsf
-1			13									
- 10 -						8.5						
	S-3 10.0'- 12.0'	19	3 9 9 8		GM	Medium dense, reddish brown GRAVEL with Clay and	Silt, moist (GM)	-		1.	-	
190						_13.5		_				
—15 - 	S-4 15.0'- 17.0'	9	50 50/1"			Very dense, reddish brown DECOMPOSED ROCK frag and Silt, moist	gments with Clay	-	1	-	-	
	19.0'-'	Water L	evel Data			Top of Rock at 20 feet BGS. 20.0 See Rock Coring Log. Sample Type Notes:			-		-	Installed 4-inch casing to 19 feet BGS.
		Elapsed	Dep	th in feet	to:	PP - Pocket Panetra	ometer					
Date	[^] Time	Time (br)		Bottom	Water	O Open End Rod	C. HOLOI					*
3/9/19	7:45	(hr) -	Casing 4.0	of Hole 15.0	Dry	T Thin-Wall Tube						
			7.0	10.0	Diy	U Undisturbed Sample						
						S Split Spoon Sample						
						G Grab Sample					1	Boring No.: B-57
ield Tes	st Legend		tancy:			Slow R - Rapid Plasticity: NP - Nor	n-Plastic L - Low	M -	Med	lium	н	- High
			ghness:			edium H - High Dry Strength: N - None	L-Low M-M	edium	H	- Hi	igh	VH - Very High
IOTES:	1.) "ppd" de	notes soil	sample ave	rage diamet	ral pocke	t penetrometer reading. 2.) "ppa" denotes soil sample avera	ige axial pocket pene	etrome	ter re	eadir	ng.	
	o.) waximui	ii Particle	oize is dete	innined by d	rect obse	ervation within limitations of sampler size. 4.) Soil identification	ons and field tests ba	ased o	n visi	ual-r	nanu	al methods per ASTM D2488.

MOT1 MACI		VI P	M	М					CORE BORING LO	OG								RING NO.: B-57
					la - D	ala -+				Project No.:		35	3754				P	age 1 of 6
Project		2110	PennEa			-				Project No.: Project Mgr:			itsal S	Shah	0.000			
Location Client:	on:		<u>Vick Cr</u> PennEa	- 3.597775		i, INJ				Field Eng. Sta	aff:		le Ha					
Drilling	Co ·		Craig Te			., Inc.		- 17		Date/Time Sta		7	arch 8			2:20	pm	
Driller/			Vick Be			S V				Date/Time Fir	nished:	_Ma	arch 1	1, 20	19 a	t 12:	15 pr	n
Elevation					Vertic	cal Datur			Boring Location: Adjacent to southeast en	nd of driveway		Co	ord.:	N: 4	40.43	1134	E: -	74.968926
Item Type		+	Casi HV			e Barrel NQ2		ore Bit Diamond	Horizontal Datum: NAD 1983			Dr	illing	Meth	od: V	Vireli	ne	
Length (5			5	1	3.25	Rig Make & Model: CME-55LC				19		v	5111		
Inside Di			4			2.0		2.0	Visual Identification, Description and	d Domarks							1	
Depth/	Avg Core		Run/	Rec	RQD			Ctrotum	(Rock type, colour, texture, weath	nering,	Depth		Dis	conti	nuitie	es		
Elev.	Rate	Depth (ft)	(Box) No.	(in. / %)	(in / %)	Rock	Core	Stratum Graphic	field strength, discontinuity space optional additional geological obser	cing, rvations)	(ft.)	(See	Legend I	or Rock I	Descripti	on Syste	m)	Remarks
(ft)	(min /ft)		INO.	70)	/0)	Hard.	Weath		SEE TEST BORING LOG FOR OVERBURD		1	Туре				Aper		
		20.0						× × × × × × × × ×	SILTSTONE, reddish brown, fine grained, h	nighly								Loss of water from 24 to 25 feet
	1.80							X X X X X X	weathered, medium strong, extremely close spaced discontinuities	e to close	20.50	J	20	P,R	FR	0	N	BGS.
								× × ×			20.93	J	23	P,Sm	FR	0	N	e e
	2.00							× × ×	21.35' - 21.55' Weathered soft rock									
ļ								× × ×	21.9' - 22.5' Highly Fractured zone, weathe	red soft rock								
	2.80		R-1	30	10	R3	н	× × × × × × × × ×	,									
L			"	50%	17%			$ \times \times \times $										
								$\begin{bmatrix} \times & \times & \times \\ \times & \times & \times \end{bmatrix}$										
	3.30							× × ×			1							
180								× × × × × ×			1							
	3.40	25.0						× × × × × ×										
-25		25.0					-	X X X X X X X X X X X X X X X	SILTSTONE, reddish brown, fine grained,	fresh, weak							İ	
	1.60	20.0						× × ×	to medium strong, extremely close to mode spaced discontinuities	erately								
_									25.85' - 26.5' Highly Fractured zone									
	1.70							1 ^ ^			26.50	J	10	P,R	FR	PO	N	
-								× × × × × ×			20.00	١	"	"			"	
	2.00		R-2	57	37	R3	SL	× × × × × ×										
	2.00		R-2	95%	62%	17.9	JL	× × ×							-	РО	CL	
				1				× × ×			27.94	J	15	P,R	DG			
1	2.30				1			× × ×			28.53	J	15	P,Sm	DS	Т	N	
		1			1			× × ×										
	1.40	30.0						$\times \times \times$										
-30	+	30.0		<u> </u>	-	+		× × × × × ×	SILTSTONE, reddish brown, fine grained,									
	1.50						1	× × × × ×	weathered, strong, very close to close spa discontinuities	aced								
-	+	1						IV V V	30' - 32.95' Fractured zone									2
	1.40						1	× × ×										
_	-	1						× × × × × × × × × × × × × × × × × × ×										
	1.50		R-3	60	20	R4	SL											
L				100%	33%)		× × ×			20.05	_		0.5	DC.	1	N	
	1.00			1				× × ×	n detail		32.97	В	30	S,R				,
	1.80							× × ×			33.43	В	20	P,Sm	DS	0	N	
170	1	1		1				× × ×			34.27	В	25	P,Sm	FR	0	N	
	2.60	35.	0	1				× × ×			34.73	В	30	P,Sm	1		N	
—35	1	35.		 				1 × × ×	SILTSTONE with interbedded Sandstone,	, reddish	"""		~	,,,,,,	1			
	1.40							x x x	brown, fine grained, fresh, strong, very clo moderately spaced discontinuities	ose to	35.57	В	20	P,Sn	n FR	Т	N	
-	-	-						×××										
	1.30							× × ×			36.35	В	25	P,Sn	n FR	PO	N	
-		-						× × ×										
	1.60		R-4	60	40	R4	FR	× × ×										
L			'	100%	67%	•		× × ×			37.85	В	20	P,Sn	n FR	т	N	1
	0.00							× × ×	10				1		1			
	2.00							× × ×										P P
	1							X X X X X X X X X X X X X X X X X X X				1			۰	de		
	1.50	40.	١					$\times \times \times$										
		140		Level	Data			× × ×] 9S:									
-	T		Elapse	ed	Dept	h in feet	t to:	1										
Date	10	ne	Time (hr)			Bottom of Hole	Wate	r										
3/9/19	7:	45	-		.0	15.0												
	1			\pm														
														В	orino	No.:	R.4	57

MOT MAC		ALD	M	M					CORE BORING LOG							150-000	DRING NO.: B-57 Page 2 of 6
Depth/ Elev. (ft)	(min	Depth (ft)	Run/ (Box) No.	Rec. (in. / %)	RQD (in. / %)		Core	Stratum Graphic	Visual Identification, Description and Remarks (Rock type, colour, texture, weathering, field strength, discontinuity spacing, optional additional geological observations)	Depth (ft.)	L		scont				Remarks
	/ft)	40.0				Hard.	Weath	× × × ×	SILTSTONE, reddish brown to light gray, fine grained, fresh, strong, close to wide spaced discontinuities		Туре	Dip	Rgh	Wea	Aper	Infill	
								× × × × ×									=
8	1.60							* * * * * * * * * * * * * * * * * * *		42.00	J	70	P,R	FR	PO	N	
-	1.60		R-5	60 100%	50 83%	R4	FR	× × × × × × × × ×	42.6' - 43.4' Vertical Fracture	42.60	J	15	P,Sm	FR	PO	N	
	1.40							11 11 11		42.90) J	10	P,Sm U,R	DS FR	T 0	N	
160	1.50							× × × × × × × × × × × × ×									
-45	1.10	45.0 45.0						X X X X X X X X X X X X X X X X X X X	SILTSTONE, brownish yellow to light gray, fine grained, slightly weathered, strong, very close to close spaced								
8	1.40							× × ×	discontinuities 45' - 45.7' Iron staining 45.33' - 45.5' Highly Weathered Gravel seam	45.70	J	25	P,Sm	DS	Т	Fe	
16	1.00							× × × × × × × × ×	46.35' - 50' Iron staining throughout	46.35	J	20	P,Sm	DS	т	CL	
	1.30		R-6	60 100%	20 33%	R4	SL	× × × × × × × × ×									
19	1.20							× × × × × × × × × × × ×		48.07	J	5	P,R	DS	РО	Fe	
	1.10							X X X X X X X X X X X X X X X X X X X		49.10	J	20	S,R	DS	PO	Fe	
50	1.10	50.0 50.0						×××	50.0 SANDSTONE, brownish yellow to reddish brown,	_							Color change
19	1.00								medium grained, moderately weathered to fresh, strong, extremely close to wide spaced discontinuities 50' - 51.3' Highly Weathered zone								water to light brown. Loss of water
	1.00									51.47	J	15	P,Sm	FR	т	N	from 50 to 55 BGS.
79	1.10		R-7	51 85%	30 50%	R4	м										
	1.10			33333													
150																	
-55	2.40	55.0							CANDSTONE groute raddish brown medium arrived								Loss of water
	0.80	55.0							SANDSTONE, gray to reddish brown, medium grained, fresh, strong, close to moderately spaced discontinuities	55.55	J	5	P,R	FR	0	N	from 56 to 60 BGS.
	1.90								56.8 56.45' - 56.8' Highly Weathered Gravel seam								
	2.70		R-8	59 98%	45 75%	R4	FR	× × × × × × × × × × × × ×	SILTSTONE, reddish brown, fine grained, slightly weathered, strong, close spaced discontinuities								
				90%	75%			× × × × × × × × × × × × × × × × × × ×		57.85	J	20	P,Sm	FR	т	N	
	3.00							× × × × × × × × × × × × × × × × × × ×		58.40 58.95	J	10	U,R P,Sm		T PO	N	
60	1.90	60.0						× × × × × × × × × × × × × × × × × × ×	0.000								Long oft
	2.50	60.0						I Y Y Y	SILTSTONE, reddish brown, fine grained, slightly weathered, strong, very close to moderately spaced discontinuities								Loss of water from 60 to 62 BGS.
	2.30							X X X X X X X X X X X X		61.35	J	5	P,R	FR	0	N	
	1.70		R-9	54	30	R4	SL	× × × × × × × × × × × × × × × ×									1
	1.70		r-9	90%	50%	K4	SL	× × × × × ×	11 2	62.47 63.05	J	25 20	P,R U,Sm		PO T	N	
140	1.00							× × × × × × × × × × × × × ×	7, 7,								
1005N	1.10	65.0						× × × × × × × × × × × × × × × × × × ×									
	A			,				A X					-		•		
OTES	:								PROJECT NO.: 353754		1		Bo	oring	No.:	B-5	7

Γ,	MOTI	-		M							CODE DODING LOC								RING NO.: B-57
	MACE		ALD	IVI	M						CORE BORING LOG								age 3 of 6
	epth/ Elev.	Rate	Depth (ft)	Run/ (Box)	Rec. (in. /	RQD (in. /	Rock		Stratum Graphic	٧	isual Identification, Description and Remarks (Rock type, colour, texture, weathering, field strength, discontinuity spacing,	Depth (ft.)				nuitie Descripti		7)	Remarks
	(ft)	(min /ft)	(1.7)	No.	%)	%)	Hard.	Weath	ŀ		optional additional geological observations)		Туре						
-		1.10	65.0						X X X X X X X X X X X X X X X X X X X		SILTSTONE, reddish brown, very fine grained, fresh, strong, close to wide spaced discontinuities Calcareous inclusions throughout	65.88 66.05	1	10 20	P,Sm P,Sm	FR FR	PO T	Z Z	
-		1.30	70.0	R-10	58 97%	51 85%	R4	FR	× × × × × × × × × × × × × × × × × × ×			69.05 69.33	J		U,Sm P,Sm	FR FR	T	z z	Loss of water
Г	70	1.40	70.0						× × ×		SILTSTONE, reddish brown, very fine grained, fresh, strong, close to moderately spaced discontinuities								from 70 to 75 feet BGS.
-		1.10							X X X X X X X X X X X X X X X X X X X		Calcareous inclusions throughout	70.87 71.27	J	10 20	U,R P,Sm		T T	N N	
-		1.10		R-11	60 100%	57 95%	R4	FR	X X X X X X X X X X X X			72.20	J	20	P,Sm	FR	Т	N	
	130	1.10							× × × × × × × × × × × × × × ×			73.40	J	10	P,Sm	FR	PO	N	1
	-75	1.30	75.0 75.0						X X X X X X X X X X X X		SILTSTONE, reddish brown, very fine to fine grained,								Loss of water from 75 to 80 feet
-		1.40	75.0						× × × × × × × × × × × × × ×		slightly weathered, medium strong, extremely close to moderately spaced discontinuities								BGS.
-		1.50	-		60	43	-		× × × × × × × × × × × × × × × × × × ×		76.6' - 76.9' Highly Fractured zone	76.59 76.90	J	10 15	P,R P,R		PO T	N N	
-		1.20		R-12	100%	72%	R3	SL	× × ×		78.23' - 78.52' Fractured zone	77.62 78.53		10			Т	2 2	
-		1.10							× × × × × × × × × × × × × × × × × × ×			79.05 79.13	J	5	P.R	FR DG	т	2 2	
-	-80	1.60	80.0	_					× × ×	80.0	SANDSTONE, reddish brown to gray, very fine grained, slightly weathered, very strong Calcareous inclusions throughout 80' - 80.9' Vertical Fracture	80.90	J	20	P,F	FR	т	N	Loss of water from 80 to 85 feet BGS.
		1.10			60	58			• • •			81.40	J	25	P,Sr	n FR	Т	N	
-		1.00	-	R-1	3 100%		R5	SL											
-	120										83.97' - 84.1' Highly Fractured zone	83.97 84.10	J	10 20	P,F	DS DS	00	22	×
	 85	1.30	85.0								SANDSTONE, reddish brown to gray, very fine grained, fresh, very strong, close to wide spaced discontinuities Calcareous inclusions throughout 55.3" - 86.2" Vertical Calcite vein								Loss of water from 85 to 90 feet BGS.
	-	1.9										86.9	5 J	5	U,S	m FR	PO	И	
	-	1.3	0	R-1	4 59 98%	54 90%	R5	FR											
/	_	1.3	-									89.3	0 J	20	0 P,	R FF	т	N	
	NOTE	<u> </u>	90.	0		1					PROJECT NO.: 353754				E	Boring	J No.	B-4	57

MAC		ALD	M	M					CORE BORING LOG								DRING NO.: B-57 Page 4 of 6
Depth/ Elev. (ft)	Avg Core Rate (min	Depth (ft)	Run/ (Box) No.	Rec. (in. / %)	RQD (in. / %)	Rock	: Core	Stratum Graphic	Visual Identification, Description and Remarks (Rock type, colour, texture, weathering, field strength, discontinuity spacing, optional additional geological observations)	Depth (ft.)	I Saa			tinuit	ies ption Sys		Remarks
	/ft)	00.0				Hard.	Weath						market for the co		Aper	25.25.77	
d	1.20	90.0							SANDSTONE, reddish brown to gray, very fine to fine grained, fresh, very strong, close to moderately spaced discontinuities Calcareous inclusions throughout								Loss of water from 90 to 95 f BGS.
	1.40								04.071 50.001					SEEN.	7020		
25				60	54				91.67' - 92.2' Vertical Fracture	91.66 92.15	J	10	P,R P,Sm	FR	О Т	N	
	2.00		R-15	100%	90%	R5	FR				3.00	,,,	,0,,,	111			
	1.60									92.94	J	10	P,R	DG	т	ML	
110										93.45	J	10	P,R	FR	PO	N	
	1.20																
)5 ·		95.0 95.0							SANDSTONE, reddish brown to gray, very fine to fine								Loss of water
	1.70								grained, fresh, very strong, close to moderately spaced discontinuities	95.65	j	20	P,R	DG	0	ML	from 95 to 10 feet BGS.
18										95.65	J	20	P,R	DG	"	ML	Used approximately 2200 gallons
	1.70									96.65	J	10	P,R	FR	PO	N	from 0 to 95 f BGS.
	1.10		R-16	55	45	R5	FR						3848	20,000			
14	11.10		1010	92%	75%	110	110			97.75	J	20	P,R	DS	PO	N	
	1.60																
										98.74	J	15	P,R	FR	0	N	
	1.70	100.0															
100 -	0.50	100.0						:::	SANDSTONE, reddish brown to gray, fine to medium grained, fresh, strong, wide spaced discontinuities	100.20	В	30	U,R	DS	т	N	Loss of water from 100 to 1
	0.50							:::	Calcite infilling in healed joints	1.00.20	J	~~	0,11			**	feet BGS.
	1.50																
	1.70		R-17	58 97%	55 92%	R4	FR										
	1.30																
100	1.60																
105 -	1.00	105.0															1
	0.70	105.0							SANDSTONE, reddish brown to gray, fine to medium grained, fresh, medium strong, moderately spaced discontinuities	105.10	В	15	U,R	DG	0	CL	Loss of water from 105 to 1 feet BGS.
-									discontinuities								100.200.
	1.00									106.60	J	75	S,R	FR	Т	N	
	4.70			59	43	1200							0,				
	1.70		R-18	98%	72%	R3	FR			107.50	J	25	U,R	FR	т	N	
	1.40								**	107.90 108.25	B	75 20	S,R U,R	FR DE	T PO	N CL	
										108.75	J	70	S,R	FR	VT	N	
	1.40	110.0															
110	Comment of the Commen	110.0							SANDSTONE with interbedded Shale, brown to	110.10	J	50	S,R	FR	PO	N	Loss of water
	1.00								reddish gray, medium to very fine grained, fresh, medium strong, moderately spaced discontinuities	10000000		10,000		1000	1.30	30%	from 110 to 1 feet BGS.
	1.30					-			111.1' - 112' Fractured zone	111.10	J	80	P,R	FR	VT	N	
	1.30																
	1.25		R-19	60 100%	46 77%	R3	FR										
8			*	100/0	. 1 /0				6.	112.70	В	15	S,Sm	FR	Т	Ν	
	1.30									113.50	В	30	U,Sm	FR	VT	N	
90 -													- Director				
	1.50	115.0															
															-		
OTES:									PROJECT NO.: 353754				Во	rina I	No.:	3-5	7

Elev. Rate (ft) (No. %) (see Legend for R	R FR PO	
Depth/ Elev. (ft) (min /ft) Rock Description System gh Wea Aper In R DS O (Loss of water from 115 to 120 feet BGS.	
2.30 115.0 2 115.0 2 115.0 2 2.30 115.0 2 2.30 115.0 2 2.30 115.0 2 2.30 115.0 2 2.30 115.0 2 2.30 115.0 2 2.30 115.0 2 2.30 115.70 J 80 S,f 115.70 J 80 S,f 115.70 J 80 S,f 115.70 J 80 S,f 116.0 2 2.30 115.70 115.70 115.70 115.70 115.70 115.70 115.70 115.70 115.70 115.70 115.70 115.70 115.70 115.70 115.70 115.70 115.70 115.70 115.70	R DS O (Loss of water from 115 to 120 feet BGS.
1.60 1.40 R-20 52 17 28% R3 SL 118.10 J 25 S, I 118.60 J 40 S, I 120.0		N
1.40 R-20 87% 28% R3 SL 118.10 J 25 SJ 1.30 120.0 120.0 SANDSTONE, reddish brown, fine grained, very		N
1.00 120.0 120.0 SANDSTONE, reddish brown, fine grained, very	R FR T	
120.0 SANDSTONE, reddish brown, fine grained, very		N
		Loss of water from 120 to 125 feet BGS.
1.00		
1.15 R-21 59 98% 95% R4 FR		
1.50 1.50 124.25 J 25 S,6	Sm FR PO	N
1.20 125.0 125.0 SANDSTONE, reddish brown, fine grained, very strong, moderate to close spaced discontinuities		Loss of water from 125 to 130 feet BGS.
1.25 126.80 J 25 P	P,R FR VT	N
1.30 R-22 56 93% R5 SL	J,R FR O	N
1.40 128.6' - 129.7' Fractured zone		
130.0 SANDSTONE, reddish brown, fine grained, fresh, very strong, wide spaced discontinuities		Loss of water from 130 to 135 feet BGS.
0.45		
1.10 R-23 60 100% R5 FR 132.80 J 85 F	P,R FR VT	Ca
1.00		
135.0 SANDSTONE, reddish brown to gray, fine grained, fresh, strong, wide spaced discontinuities		Loss of water from 135 to 140 feet BGS.
1.25		
1.30 R-24 60 60 R4 FR		
0.75 139.20 J 75 S	P,R FR VT S,R FR VT	N
NOTES: PROJECT NO.: 353754	Boring No.:	3-57

MOT MAC	T DON	ALD	M	M					CORE BORING LOG (continued)								DRING NO.: B-57 Page 6 of 6
Depth/ Elev. (ft)	Avg Core Rate (min	Depth (ft)	Run/ (Box) No.	Rec. (in. / %)	RQD (in. / %)	30843490	Core	Stratum Graphic	Visual Identification, Description and Remarks (Rock type, colour, texture, weathering, field strength, discontinuity spacing, optional additional geological observations)	Depth (ft.)	(Se	Di:	SCON				Remarks
	/ft)	140.0				Hard.	Weath		SANDSTONE, reddish brown to gray, fine grained, fresh, medium strong, wide spaced discontinuities		Туре	Dip	Rgh	Wea	Aper	Infill	Loss of water from 140 to 145
_									V sistema i managaman i managa								feet BGS.
	1.20																
	1.75		R-25	57 95%	57 95%	R3	FR		A								
	2.00																
- 60 ⁻	1.15																
—145	1.40	145.0 145.0							SANDSTONE, reddish brown to gray, fine to medium grained, fresh to slightly weathered, medium strong, very close to moderately spaced discontinuities								Loss of water from 145 to 150
	1.40					=			very close to moderately spaced discontinuities 145' - 147.5' Crossbeds with light gray Sand.	145.65 145.90	ŗ	20 30	U,R S,R	FR FR	VT T	N N	feet BGS.
	1.25									146.70	J	45	P,R	FR	PO	N	
	1.10		R-26	60 100%	38 63%	R3	FR		* .								
	1.20								,								
	1.20									149.00	J	85	S,R	DS	т	N	
 150		150.0						:::	150.0 End of Boring at 150 feet BGS. Borehole grouted with cement and bentonite holeplug.	-							
_									Borenole grouted with cernent and bentonite holeping.								
_																	
									1				=				
_																	
50																	
—155					81												
-																	
-																	
-																	
—160	-																
<u>L</u>									6								
- 40 ⁻																	
NOTES									PROJECT NO.: 353754				Bo	oring	No.:	R-5	7

Figure B-57.1 B-57 Box 1 R1-R4 Dry

Figure B-57.2 B-57 Box 1 R1-R4 Wet

MOTT M M MACDONALD M

PennEast Pipeline Project

Rock Core Photographs

BORING NO.:

Figure B-57.3 B-57 Box 2 R5-R8 Dry

Figure B-57.4 B-57 Box 2 R5-R8 Wet

MOTT M MACDONALD M PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-57.5 B-57 Box 3 R9-R12 Dry

Figure B-57.6 B-57 Box 3 R9-R12 Wet

MOTT M M MACDONALD M

PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-57.7 B-57 Box 4 R13-R16 Dry

Figure B-57.8 B-57 Box 4 R13-R16 Wet

MOTT M PennEast Pipeline Project BORING NO.:

MACDONALD M Rock Core Photographs B-57

Figure B-57.9 B-57 Box 5 R17-R20 Dry

Figure B-57.10 B-57 Box 5 R17-R20 Wet

MOTT M M M

PennEast Pipeline Project

Rock Core Photographs

BORING NO.:

Figure B-57.11 B-57 Box 6 R21-R24 Dry

Figure B-57.12 B-57 Box 6 R21-R24 Wet

MOTT M MACDONALD

M

PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-57.13 B-57 Box 7 R25-R26 Dry

Figure B-57.14 B-57 Box 7 R25-R26 Wet

MOTT M MACDONALD M PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

MOT MAC	T DONAL	M D	М		T	SOIL	BORING LO	G		1			BORING NO.: B-WICK-1 Page 1 of 1
						P 19 191 11 11		Project No.:		-	SOUTH OF	AUTES AND	
	Project:												
								and the same of th	4			0017	
Driller	Helper:	America Since	The state of the state of	Control of the last						200	OK COL		
150 PH 150 PH 150 PH 150 PH	n: 247 ft.		The second second		The state of the s	Boring Location: Near tree line	adjacent to power lines		Coo	_	_		
Type						Rig Make & Model: CMF-55I C	2	Hammer Type					
Length (2		5	☐ Truck ☐ Tripod	☐ Cat-Head	☐ Safety	□в	ento	nite		Casing Advance
Hammer	Wt. (lb.)	140							□ P	olyn /ate	ner		Mud Rotary
Hammer	Fall (in.)	30	30		-	□ Skid □	☐ Cutting Head			one			
Depth/	Sample	D	Sample	01 1	USCS		I Identification & Desc		F	ield	Tes		
Elev. (ft)	No. / Interval	Rec. (in)	Blows per 6"	Stratum Graphic	Group	(Density/cons	sistency, color, Group N article size, structure, m	lame, oisture	δ	ness	ity	rengti	Remarks
(11)	(ft)		pero		Symbo	optional description	s, geologic interpretation	on, Symbol)	Dilatancy	Toughness	Plasticity	Dry Strength	
	S-1	18	2	////	CL	Soft, reddish brown, Silty C	LAY, trace fine Sand, mois	t (CL)	S		L	L	PP = 1.75 tsf
	0.0'- 2.0'		1 3		1							17000	
			5										
											-		
												- 1	
				///									
		- 6				3.5							
						<u> </u>			-	i i			
		1	. 12	9									
- 5 -			- 11	4		10 to 4 to 4							
	S-2	9	41			Very dense, reddish brown, Gravel and coarse to fine S	DECOMPOSED ROCK fra	agments with	-	-	ē	-	
	5.0'- 7.0'		36 46			Graver and coarse to line Si	and, dry						
			46	A									
- 240													
240				a .									
- 1													
	8.0'-'				ı ñ					-	ď.	-	Rapid water loss at 8 feet BGS while driving casing to 8 feet BGS.
2 0									-				driving casing to 6 feet BGS.
				4	1								
— 10 -		1 44		8 (The state of the state of							
	S-3	2	50/2"			Very dense, reddish brown, Gravel and coarse to fine Sa	DECOMPOSED ROCK from and, dry	agments with	1	-	*	-	Rapid water loss while driving casing to 11 feet BGS.
	10.0'- 12.0'				i i							- 5	to Trick Boo.
150													
				• 1		12.0							
4.5						Top of Rock at 12 feet BGS See Rock Coring Log.							
	5												
- A													
— 15 -													n _k
			65		-								
						36-1				Ţ			
230													1 1 1 1
-			- 4										
		Water Le				Sample Type	Notes:		4			_	
Date	Time	Elapsed Time	Dep Bot. of	th in feet Bottom		O Open End Rod	PP = Pocket Penetr TV = Torvane **	ometer					
		(hr)	Casing	of Hole	Water	T Thin-Wall Tube	rv – rorvane						ļ
3/6/19 3/7/19	9:00 9:45	-	11.0 11.0	12.0 23.0	Dry 17.6	U Undisturbed Sample	= "						
3/8/19	9:26	-	19.0	70.0	17.33	S Split Spoon Sample							
						G Grab Sample						3	Boring No.: B-WICK-1
Field Tes	st Legend		ancy:				asticity: NP - No	n-Plastic L - Low	M -	Med	lium	Н	- High
NOTES	1 \ IInnell -		ghness:	3744 1243241	A 172 HA	edium H - High Di	ry Strength: N - None	e L-Low M-M	edium	n H	- H	igh	VH - Very High
NOTES:) ppd de 3.) Maximui	m Particle S	Size is dete	rmined by o	irect obse	t penetrometer reading. 2.) "ppa' ervation within limitations of sample	denotes soil sample avera r size. 4.) Soil identificati	age axial pocket pend ions and field tests ba	etrome ased o	ter re	eadir ual-r	ng. nanu	al methods per ASTM D2488.

MOT		A1 F	N	I ,	 Μ					CORE BORING LO)G							B-\	RING NO.: NICK-1 age 1 of 4
	DON					ne Pro	iect				Project No.:			3754					ige I of 4
Projec		-				ockton,					Project Mgr:			sal S			-		
Client		-			t Pipeli					- part -	Field Eng. Sta Date/Time Sta			e Har rch 5		9 at	12:45	pm	
Drillin	_					ng Co., liles Ne					Date/Time Siz			rch 8					
Elevation	/Helpe on: 247		NICK	Deei			l Datum	: NAV	D 1988	Boring Location: Near tree line adjacent to	o power lines		Co	ord.:	N: 4	0.42	9655	E: -7	4.967493
Item			С	asing HW	g		Barrel Q2		ore Bit Diamond	Horizontal Datum: NAD 1983			Dri	lling	Meth	od: V	Virelir	ne	
Type Length				5			5		3.25	Rig Make & Model: CME-55LC									
Inside I	Avg Core		RL RL			RQD	Rock C	2050	2.0 Stratum	Visual Identification, Description and (Rock type, colour, texture, weath field strength, discontinuity space	iering,	Depth		Disc	contir	nuitie	:S		Remarks
Elev. (ft)	Rate (min	(ft	(Bo		(in. / %)	(in / %)	ROCK C	ore	Graphic	optional additional geological obser	vations)	(ft.)	(See	Legend fo					
	/ft)						Hard. V	Veath		SEE TEST BORING LOG FOR OVERBURD SANDSTONE, grayish brown, medium to co	DEN DETAILS		Type	Dip	Rgn	vvea	Apei	1111111	Loss of water from 12 to 15 feet
	2.10	12.	.0							grained, fresh, strong, close spaced discon	tinuities								BGS.
_					1				}			13.00	J	0	S,R	FR	0	N	
	1.60		R	-1	36	28	R4	FR				13.40	j	10	U,R	DG	PO PO	SD SD	
	1.00		'	.	100%	78%						13.63	J	20	P,R	DG	(9)		
	0.00]							• • • •			14.17	J	15	P,R	DG	PO	CL	
	2.30	15	.0																Loss of water
	1.70	15	.0						0 0 0	SANDSTONE, grayish brown, medium grai weathered, strong, very close to close span discontinuities	ined, slightly ced	15.60	J	20	P,R	FR	0	N	from 15 to 20 feet BGS.
-	-	1																	Used approximately
	1.80									16.4' - 17' Fractured zone									200 gallons of water from 15 to
7 23	0	-		- 1						17' - 17.6' Highly Fractured zone									20 feet BGS.
₹ 23	1.90		F	R-2	48 80%	24 40%	R4	SL				17.60	J	10	U,R	FR	0	N	
-	-	-																	
	2.50									18.4' - 18.65' Fractured zone									
-		_																	
	2.60																		
-20			0.0							SANDSTONE, grayish brown, medium gra	ained fresh.								Loss of water from 20 to 25 feet
"	3.20		0.0							very strong, moderately spaced discontinu	uities								BGS.
												20.95	J	15	P,Sn P,Sn	FR FR	PO PO	N CL	12
	3.40											21.17	J	15	P,Sn	FR	PO	CL	
	3.40																		
	3.3			R-3	58	56	R5	FR								1			
	3.3	١		N-3	97%	93%	"	1.13				22.90	J	20	P,R	FR	PO	N	
										1									
	3.6	١				l .													
F	+	1								1		24.30	J	75	P,F	FR	PO	N	
1	3.5		25.0							}									Loss of water
-25	+	_	25.0							SANDSTONE, brownish gray, medium to grained, slightly weathered, strong, very or	coarse close to close								from 25 to 30 feet BGS.
	3.8	30								spaced discontinuities		25.60	J	10	U,F	R FF	PC	N	Used approximately
+	+	1								26.2' - 27.25' Fractured zone		26.15	5 J	15	U,F	R FF	PC	N	
	2.2	20																	30 feet BGS.
-	220					25				27.4		_ _							
	2.3	30		R-4	59 98%	39 65%	, R4	SL	× × ×	SILTSTONE, grayish brown, fine grained	l, fresh, ced	27.7	5 J	80) P,F	R FF	R T	N	
-	+	\dashv							× ×	discontinuities		28.2				R FF			
	1.9	90							××	<		20.2	Ĭ ,	"			T		
-	-	_							× × × ×										
	2.								× ×	×		29.4	0 J	1:	5 U,	R D	G O	С	L
-30	-	-	30.0				+		I V V	VI	d, fresh, strong,								Loss of water from 30 to 35 feet
	2.	80	30.0						× × × × × × × × × × × × × × × × × × ×	close to moderately spaced discontinuitie	es	30.6	i5 J		0 S,	R F	R C		BGS.
_									× ×	×									
	1	40							1 ^ ^	^1		31.2	25 J	2	0 P,S	Sm F	R P	1 6	1
122	1.	,,,							× ×	×						\perp			
1				ater apse	Level		h in fee	t to:	No	tes:									
Da	te	Time	e -	Time	Bo	ot. of	Bottom	Wat	er										
3/6/	/19	9:00	+	(hr) -		1.0	of Hole 12.0												
3/7/	19	9:45	5	-	1	1.0	23.0 70.0	17.											
3/8/	119	9:26	<u>'</u>	-		13.0	10.0	17								Borir	ıg No	∴ B -	WICK-1

335.0 335.0 340.0	Run/ ((Box) No. R-5	Rec. (in. / %) 59 98% 57 95%	RQD (in. / %) 43 72%	Rock Hard. R4	FR FR	**************************************	(continued) Visual Identification, Description and Remarks (Rock type, colour, texture, weathering, field strength, discontinuity spacing, optional additional geological observations) SILTSTONE, gray, fine grained, slightly weathered, strong, extremely close to wide spaced discontinuities 36.9' - 37.15' Highly Fractured zone	Depth (ft.) 32.15 32.64 34.40 36.90 37.15	<u></u>	e Leger		Wea	ption Sys	stem)	Page 2 of 4 Remarks Loss of water from 35 to 40 fe BGS.
40.0 40.0	R-6	57 95%	72%	R4	FR FR	**************************************	strong, extremely close to wide spaced discontinuities	32.64 34.40 36.90	J	20 15	P,Sm P,R P,R	FR FR DG	PO PO	N N CL	from 35 to 40 fe
40.0 40.0	R-6	57 95%	72%		FR	X X X X X X X X X X X X X X X X X X X	strong, extremely close to wide spaced discontinuities	32.64 34.40 36.90	J.	15	P,R P,R	FR DG	PO	N CL	from 35 to 40 fe
40.0 40.0		95%	54 90%	R4	FR	X X X X X X X X X X X X X X X X X X X	strong, extremely close to wide spaced discontinuities	36.90	J	20	P,Sm	FR	0	N	from 35 to 40 fe
40.0		95%	54 90%	R4	FR	X X X X X X X X X X X X X X X X X X X	strong, extremely close to wide spaced discontinuities		ŋ	20 10	P,Sm P,Sm	FR DG	0 0		from 35 to 40 fr
40.0		95%	54 90%	R4	FR	X X X X X X X X X X X X X X X X X X X	36.9' - 37.15' Highly Fractured zone		7	20 10	P,Sm P,Sm	FR DG	0		
40.0	R-7	60 100%				X X X X X X X X X X X X X X X X X X X				ě					
40.0	R-7	60 100%				× × ×									
	R-7	60 100%		J.			40.0 ARGILLITE, gray, very fine grained, fresh, very strong, close to wide spaced discontinuities	-							Used approximately 120 gallons of
	R-7	60 100%													water per 5 feet
			51 85%	R5	FR			42.90	J	15	P,Sm	DS	PO	N	
								43.44	J	20 65	P,Sm P,Sm	FR	т	N Fe	26
15.0 15.0							ARGILLITE, gray, fine grained, fresh, very strong, close to moderately spaced discontinuities	44.50	J	10	P,R	DG	PO	CL	Loss of water from 45 to 50 fe BGS.
	40							46.27	J	15	P,Sm	FR	0	N	
	R-8	60 100%	53 88%	R5	FR			47.32	J	15	P,Sm	FR	т	N	
50.0							50.0	49.25	J	75	P,R	DS	т	Fe	F
50.0						× × × × × × × × × × × × × × × × × × ×	SILTSTONE, gray to reddish brown, fine to very fine grained, slightly weathered, strong, very close to moderately spaced discontinuities	50.30	J	10	P,R	FR	PO	N	Loss of water from 50 to 55 fe BGS.
	R-9	56 93%	29 48%	R4		0 0 01									
	10						53.2' - 53.4' Weathered zone; Clay with Gravel	52.84	1	25	P,R	FR	PO	N	
5.0					9	× × × × × ×	SILTSTONE, reddish brown, fine grained, moderately							٠	Loss of water
						× × × × × × × × × × × × × × × × × × ×	weatnered, strong, very close to moderately spaced discontinuities	55.50	J	15	P,Sm	FR	РО	N	from 55 to 60 fe BGS.
			93%	93% 48%	93% 48% K4	R-9 56 29 R4 SL	R-9 56 29 R4 SL X X X X X X X X X X X X X X X X X X	R-9 56 29 48% R4 SL	R-9	R-9 56 29 93% 48% R4 SL	R-9	R-9	R-9	R-9	R-9 56 29 93% 48% R4 SL

	MOTT			M							CORE BORING LOG							B-	RING NO.: WICK-1
	MACE		ALD		М				Т	10	(continued) sual Identification, Description and Remarks							Pa	age 3 of 4
	Elev.	Avg Core Rate (min	Depth (ft)	Run/ (Box) No.	Rec. (in. / %)	RQD (in. / %)	Rock		Stratum Graphic	VI	(Rock type, colour, texture, weathering, field strength, discontinuity spacing, optional additional geological observations)	Depth (ft.)		Legend	conti	Descripti	on Syste		Remarks
L	190	/ft)					Hard.	Weath	×××				Туре	Dip	Rgh \	Nea /	Aper		Loss of water from 57 to 60 feet
-	1	1.30		R-10	59 98%	28 47%	R4	М	× × × × × × × × × × × × × × × × × × ×	5	7.85' - 58.8' Vertical Fracture			0.5	5	FR	PO		BGS.
-		1.80							× × × × × × × × × × × × × × × ×	5	9.1' - 59.9' Fractured zone with vertical fractures	58.45	J	85	U,R	FK	PO	N	
-	-60 -	1.60	60.0						× × × × × × × × × × × ×	v	ILTSTONE, reddish brown, fine grained, slightly eathered, medium strong, extremely close to noderately spaced discontinuities								Loss of water from 60 to 65 feet BGS.
		1.50							× × × × × × × × × × × ×			61.40	J	5	P,R	FR	PO	N	
-	-	2.30		R-11	59 98%	44 73%	R3	SL	× × × × × × × × × × × ×			62.55	J	10	P,Sm	FR	РО	N	
-		2.40			8				x x x x x x x x x x x x x x x x x x x	6	33.7' - 64.55' Vertical Fracture	63.67	J	20	U,R	FR	0	N	
	-65 ·	2.70	65.0 65.0								ARGILLITE with interbedded Sandstone, reddish prown, fine grained, fresh, very strong, close to wide spaced discontinuities								Loss of water from 65 to 70 feet BGS.
	180 -	2.70										67.20	J	10	U,R	FR	PO	N	approximately 2200 gallons of water from 40 to 65 feet BGS.
-20		2.10	-	R-12	60 100%	48 80%	R5	FR				67.70 68.50	J	15		FR			
		1.40	-							70.0		05.55							
	— 70	2.00	70.0							1	SANDSTONE, brownish gray, fine to medium grained, fresh, very strong, wide spaced discontinuities								Loss of water from 70 to 75 feet BGS.
	-	1.40		R-1	3 60	57	R5	FR											
	3	1.00			100%	95%						73.20	J	60	P,R	DG	РО	CL	ML
	- 75	1.00	75.	_							SANDSTONE, gray, medium grained, fresh, very						1		Loss of water from 75 to 80 feet
	-	1.30							• • • •		strong, wide spaced discontinuities								BGS.
	- 170		+	R-1	4 59 98%	58 6 97%	R5	FR				,							
	_	1.4	0																
والانتصار	80	1.5	80 80	_	•						SANDSTONE, reddish gray, medium grained, fresh, very strong, moderate to wide spaced discontinuities								Loss of water from 80 to 85 fee
)	-	1.5	+								very strong, moderate to more species discontinuites								BGS.
	NOTES	S:	4 2						1		PROJECT NO.: 353754				E	l Borinç	g No.	B-	WICK-1

MACI		ALD	M	М					CORE BORING LOG							В	ORING NO.: -WICK-1 Page 4 of 4
Depth/ Elev.	Avg Core Rate	Depth (ft)	Run/ (Box)	Rec.	RQD (in. /	Rock	Core	Stratum	Visual Identification, Description and Remarks (Rock type, colour, texture, weathering, field strength, discontinuity spacing.	Depth		D	iscon	tinuit	ties		Remarks
(ft)	(min /ft)	22,015	No.	%)	%)	Hard	Weath	1000-0100000000	optional additional geological observations)	(ft.)	(Se		d for Roc		An interest (5000000	
	1.40		R-15	59 98%	59 98%	R5	FR	• • • •		82.13	J	15	U,R	FR	PO	N	
	1.30			98%	98%					82.90	J	25	P,Sm	FR	т	N	
85	1.30	85.0															
-	1.50	85.0		,					SANDSTONE, gray, fine to medium grained, fresh, very strong, wide spaced discontinuities								Loss of water from 85 to 90 feet BGS.
160	1.70		R-16	60 100%	59 98%	R5	FR	• • • • • • • • • • • • • • • • • • • •						a.			
	1.20							• • • •		87.93	J	20	P,Sm	FR	PO	N	
—90	1.30	90.0															
-	1.10	90.0						×××	SANDSTONE, brownish gray, fine to medium grained, fresh, strong, close spaced discontinuities 91.0 SILTSTONE, reddish brown, fine grained, highly	90.50	J	40	P,R	FR	PO	N	Loss of water from 90 to 95 feet BGS.
-	1.60		D 47	27	11			× × × × × × × × × × × × × ×	weathered, medium strong, extremely close to close spaced discontinuities								
-	2.60		R-17	45%	18%	R4	FR	× × × × × × × × ×									
 —95 _	3.40	95.0						* * * * * * * * * * * * * * * * * * *									
- 95	1.40	95.0						× × × × × × × × ×	SILTSTONE, reddish brown, fine grained, slightly weathered, strong, close to moderately spaced discontinuities								Loss of water from 95 to 100 feet BGS.
- ₁₅₀ -	1.20		R-18	57	43	R4	SL	× × × × × × × × × × × × × × × × × × ×	97.05' - 97.75' Vertical Fracture	96.95	J	10	P,Sm	FR	РО	N	
_	1.50	2		95%	72%			XXX		97.90	J	85	P,R	FR	PO	Z	
	1.50	100.0						× × × × × × × × × × × × × × × × × × ×	100.0	99.23	J	5	U,R	FR	PO	N	
_						=	20		End of Boring at 100 feet BGS. Borehole grouted with cement and bentonite holeplug.								
																3	
—105 -									- TX			100			5		=
				н													
NOTES:							9		PROJECT NO.: 353754	ı			Boi	ring I	No.:	3-W	/ICK-1

Figure B-WICK-1.1 B-WICK-1 Box 1 R1-R4 Dry

Figure B-WICK-1.2 B-WICK-1 Box 1 R1-R4 Wet

MOTT M MACDONALD

M

PennEast Pipeline Project

Rock Core Photographs

BORING NO.:

Figure B-WICK-1.3 B-WICK-1 Box 2 R5-R8 Dry

Figure B-WICK-1.4 B-WICK-1 Box 2 R5-R8 Wet

MOTT M M

PennEast Pipeline Project
Rock Core Photographs

BORING NO.:

Figure B-WICK-1.5 B-WICK-1 Box 3 R9-R12 Dry

Figure B-WICK-1.6 B-WICK-1 Box 3 R9-R12 Wet

MOTT M M M

PennEast Pipeline Project

Rock Core Photographs

BORING NO.:

Figure B-WICK-1.8 B-WICK-1 Box 4 R13-R16 Wet

MOTT M M M

PennEast Pipeline Project

Rock Core Photographs

BORING NO.:

Figure B-WICK-1.9 B-WICK-1 Box 5 R17-R18 Dry

Figure B-WICK-1.10 B-WICK-1 Box 5 R17-R18 Wet

MOTT M MACDONALD PennEast Pipeline Project

Rock Core Photographs

BORING NO.:

Appendix C

Installation Load and Stress Evaluation

Horizontal Directional Drilling Operating Stress Analysis - MAOP Based

PennEast Pipeline Project Project Name: Project No: 353754

HDD Name: Wickecheoke Creek Location: Hunterdon County, NJ

By: M. Lockwood Checked: G. Duyvestyn PennEast Owner: 5/17/2019 Date:

ASME/ANSI B31.4 section 402.3.2 References: ASME/ANSI B31.8 section 833.3 2. ASME/ANSI B31.8 section 833.4 3. ASME/ANSI B31.4 section 402.3.1

Design Parameters

Pipe Diameter 36 inches 0.762 inches Wall Thickness 47 D/t Ratio 1,480 psi MAOP 70,000 psi SMYS Modulus of Elasticity 2.92E+07 psi 0.5 Combined Design Factor 0.30 Poisson's Ratio 2 600 feet Design Minimum Allowable Radius of Curvature 6.50E-06 in/in/°F Coefficient of Thermal Expansion Assumed Installation Temperature 45 °F 120 °F Assumed Operating Temperature

Longitudinal Stress from Bending

Longitudinal Stress from Bending

16,846 psi

24.1% Percent SMYS

Percent SMYS

Hoop Stress

Calculated Hoop Stress

34,961 psi 49.9%

Should be less than Design Factor x SMYS of

35,000 psi

Limited by Design Factor according to 49 CFR 192.11

Longitudinal Tensile Stress from Hoop Stress

Longitudinal Tensile Stress from Hoop Stress

10,488 psi

Percent SMYS

15.0%

Longitudinal Stress from Thermal Expansion

Longitudinal Stress from Thermal Expansion

-14,235 psi Percent SMYS

Limited by 90% SMYS by ASME/ANSI B31.4 section 402.3.2

Net Longitudinal Stress (Compression Side of Curve)

Net Longitudinal Stress (Compression Side of Curve)

-20,593 psi

Percent SMYS

29.4%

Limited by 90% SMYS by ASME/ANSI B31.8 section 833.3

Net Longitudinal Stress Tension Side of Curve)

Net Longitudinal Stress (Tesion Side of Curve)

Percent SMYS

13,099 psi 18.7%

Limited by 90% SMYS by ASME/ANSI B31.8 section 833.3

Maximum Shear Stress

Maximum Shear Stress

27,777 psi Percent SMYS 39.7%

Limited by 45% SMYS by ASME/ANSI B31.4 section 402.3.1

Combined Biaxial Stress Check

Combined Biaxial Stress Check

55,554 psi

Percent SMYS

79.4%

Limited to 90% SMYS by ASME/ANSI B31.8 section 833.4

M	
мотт	M
MACDO	NALD

Horizontal Directional Drilling
Calculation of Pull Loads and Stresses during Pipe Installation

Calculated by:	M. Lockwood	Water Service
Checked by:	G. Duyvestyn	
Date:	4/19/2019	
Project No:	353754	

PROJECT: PennEast Pipeline Project - Case 1

HDD CROSSING LOCATION: Wickecheoke Creek

Reference:

Installation of Pipelines by Horizontal Directional Drilling, an Engineering Guide, PRCI Publication 2015
 Pipeline Design for Installation by Horizontal Directional Drilling, Manual of Practice, ASCE MREP 108, 2005

					IDD Insta	lation L	oad Ana	ilysis		_			-				1	HDD Inst	allation	Stress A	nalysis		4:		
Segment Type	Type of Curve	Boro Sta	tioning	Installe	Length metres	Bore E	levation	(1000000)	Diamoter	Geotechnical TOTAL PULL LOADS Friction Factor			Tensile (Axial) Stress		Bending Stress		55	Hoop Stress		is	Combined Tensile and Bending Factor	nsile and Bending Be	Combined Tensile, Bending and Hoop Factor	Combined Tensile, d Bending ar Hoop <1.0	
Pipe Entry Location		5095+00	155+328	0.0	0.0	325.6	motres 99.2	Inch	mm	-	99,394 lb	49.7 tons	psi 1,178	MPa 8.12	% SMYS 1.68%	psi 0	MPa	% SMYS		MPa	% SMYS				
streight		5096+82	155+353	83.8	25.5	308.1	93.9	48.0	1219.2	0.3	112,828 lb	56.4 tons	1,338	9.22	1,91%	0	0.00	0.00%	213.8	1.47	0.00%	0.02	Yes	0.00	Yes
straight		5097+64	155+378	167.6	51.1	290.7	88.6	48.0	1219.2	0.3	126,262 lb	63,1 tons	1,497	10,32	2.14%	0	0.00	0.00%	427.5	2.95	0.61%	0.02	Yes Yes	0.00	Yes
straight straight		5098+46 5099+28	155+403 155+428	251.4 335.2	76.6 102.2	273.3 255.9	83.3 78.0	48.0 48.0	1219.2	0.3	139,696 lb	69.8 tons	1,656	11.42	2.37%	0	0.00	0.00%	641.3	4.42	0.92%	0.03	Yes	0.01	Yes
straight		5100+10	155+453	419.0	127.7	238.5	72.7	48.0	1219.2	0.3	153,130 lb 166,564 lb	76.6 tans 83.3 tans	1,815	12.52	2.59%	0	0.00	0.00%	855.1	5.90	1.22%	0.03	Yes	0.01	Yes
straight		5100+92	155+478	502.8	153.2	221.0	67.4	48.0	1219.2	0.3	184,455 lb	92.2 tons	2,187	13.61 15.08	2.82%	0	0.00	0.00%	1,068.8	7.37	1.53%	0.04	Yes	0.02	Yes
straight	-	5101+74	155+503	586.6	178.8	203.6	62.1	48.0	1219.2	0.3	202,347 lb	101.2 tons	2,399	16.54	3.43%	0	0.00	0.00%	1,022.0	5.57 7.05	1.15%	0.04	Yes Yes	0.03	Yes Yes
straight straight		5102+56 5103+38	155+528 155+553	670.3	204.3	186.2	56.8	48.0	1219.2	0.3	220,238 fb	110.1 tans	2,611	18.00	3.73%	0	0.00	0.00%	1,235.7	8.52	1.77%	0.05	Yes	0.05	Yes
straight		5104+20	155+578	754.1 837.9	229.9 255.4	168.8 151,3	51.4 46.1	48.0	1219.2 1219.2	0.3	238,129 lb	119.1 tons	2,823	19,46	4.03%	0	0.00	0.00%	1,449.5	9.99	2.07%	0.05	Yes	0.07	Yes
straight		5105+02	155+603	921.7	280.9	133.9	40.8	48.0	1219.2	0.3	255,020 lb 273,911 lb	128,0 tons 137,0 tons	3,035	20.93	4.34%	0	0.00	0.00%	1,663.3	11.47	2,38%	0.05	Yes	0.08	Yes
straight		5105+84	155+628	1,005.5	306.5	116.5	35.5	48.0	1219.2	0.3	291,803 lb	145.9 lons	3,247	23.85	4,94%	0	0.00	0.00%	1,877.0	12.94	2.68%	0.06	Yes	0.10	Yes
curve	vertical	5106+30	155+642	1,052.6	320.9	107.0	32.6	48.0	1219.2	0.3	339,179 lb	169.6 lons	4,021	27.72	5.74%	12,167	83.89	17.38%	2,207.3	14.42	2.99%	0.06	Yes Yes	0.12	Yes
curve	vertical vertical	5106+76 5107+22	155+656	1,099.8	335.2 349.6	98.1 89.8	29.9 27.4	48.0 48.0	1219.2	0.3	368,751 lb	184.4 tons	4,371	30.14	6.24%	12,167	83.89	17.38%	2,316.4	15.97	3.31%	0.35	Yes	0.26	Yes
curve	vertical	5107+69	155+684	1,194.0	363.9	82.2	25.0	48.0	1219.2	0.3	365,861 lb	182.9 tons 185.6 tons	4,337	29.90 30.33	6.20%	12,167	83.89 83.89	17.38%	2,418.1	16.67	3.45%	0.35	Yes	0.28	Yes
curve	vertical	5108+15	155+698	1,241.1	378.3	75.1	22.9	48.0	1219.2	0.3	379,531 lb	189.8 tons	4,499	31,02	6.43%	12,167	83.89	17.38%	2,512.2	17.32	3.59%	0.35	Yes	0.29	Yes
curve	vertical vertical	5105+62	155+713	1,288.3	392,7	68.6	20.9	48.0	1219.2	0.3	389,473 lb	194.7 tons	4,617	31.83	6.60%	12,167	63.89	17.38%	2,678.2	18.47	3,71%	0.35	Yes	0.30	Yes
curve	vertical	5109+09 5109+56	155+727	1,335.4	407.0 421.4	62.8 57.6	19.1 17.5	48.0	1219.2 1219.2	0,3	400,210 lb	200.1 tons	4,744	32.71	6.78%	12,167	83.89	17.38%	2,749.9	18.96	3.93%	0.36	Yes	0.32	Yes
curve	vertical	5110+03	155+755		435.8	52.9	16,1	48.0	1219.2	0.3	411,379 lb 422,773 lb	205.7 lons 211.4 lons	4,877 5,012	33.62	6.97%	12,167	83.89	17.38%		19.40	4.02%	0.36	Yes	0.33	Yes
curve	vertical	5110+50	155+770		450.1	48.9	14.9	48.0	1219.2	0.3	434,272 lb	217.1 lons	5.148	34.55	7.16%	12,167	83.89 83.89	17.38%	2,870.8	19.79	4.10%	0.36	Yes	0.34	Yes
curve	vertical	5110+97	155+784		464.5	45.5	13.9	48.0	1219.2	0.3	445,798 lb	222.9 tons	5,285	36,44	7.55%	12,167	83.89		2,961.5	20.13	4.23%	0.36	Yes Yes	0.35	Yes
curve	vertical vertical	5111+44 5111+91	155+798		478.8 493.2	42.8 40.6	13.0	48.0	1219.2	0.3	457,304 lb	228.7 tons	5,421	37.38	7.74%	12,167	83.89	17.38%	2,995.6	20.65	4.28%	0.37	Yes	0.36	Yes
curve	vertical	5112+38	155+827		507.6	39.1	11.9	48.0 48.0	1219.2	0.3	468,758 lb 480,141 lb	234.4 lons 240.1 lons	5,557	38.31	7.94%	12,167	83.89	17.38%	3,022.0	20.64	4.32%	0.37	Yes	0.37	Yes
curve	vertical	5112+85	155+842	1,712.4	521.9	38.1	11.6	48.0	1219.2	0.3	491,441 Ib	245.7 lons	5,692 5,826	40.17	8.13%	12,167	83.89	17.38%	3,041.0	20.97	4.34%	0.37	Yes	0.37	Yu5
curve	vertical	5113+32			536.3	37.8	11,5	48.0	1219.2	0.3	502,650 lb	251.3 tons	5,959	41.08	8.51%	12,167	83.89	17.38%	3,052.3	21.04	4.36%	0.38	Yes	0.38	Yes
straight straight		5113+66 5114+00	155+866	1,793.5	546.7 557.0	37.8 37.8	11.5	48.0 48.0	1219.2	0.3	508,295 lb	254.1 lans	6,026	41.55	5.61%	0	0.00	0.00%	3,056.1	21.07	4.37%	0.11	Yes	0.24	Yes
straight		5114+34	155+887	1.861.5	567.4	37.8	11.5	48.0	1219.2	0.3	513,941 lb	257.0 tans 259.8 tens	6,093	42.01	8.70%	0	0.00	0.00%			4.37%	0.11	Yes	0.24	Yes
straight		5114+68	155+897	1,895.5	577.8	37.8	11.5	48.0	1219.2	0.3	525,232 lb	262,6 tons	6,139	42.93	8.89%	0	0.00	0.00%	3,056.1	21.07	4.37%	0.11	Yes	0.24	Yes
curve	vertical vertical	5115+41 5116+15	155+920	1,968.8	600.1	38.6	11.8	48.0	1219.2	0.3	564,471 lb	282.2 tons	6,692	45.14	9.56%	12,157	83.89	17.38%	3,046,9	21.01	4,35%	0.11	Yes Yes	0.24	Yes
curve	vertical	5116+88	155+964	2,042.1	522.4 544.8	40.8 44.6	12.4	48.0 48.0	1219.2	0.3	561,484 lb	280,7 tons	6,656	45.89	9.51%	12,167	83.89	17.38%	3,019.5	20.82	4.31%	0.39	Yes	0.38	Yes
curve	vertical	5117+61	155+987	2,188.7	667.1	49.8	15.2	48.0	1219.2	0.3	585,658 lb	292.8 tons 295.6 tons	6,943 7,007	47.87 48.31	9.92%	12,167	83.89		2,973.7	20.50	4,25%	0.40	Yes	0.38	Yes
curve	vertical	5118+34	156+009	2,262.0	689.5	56.5	17.2	48.0	1219.2	0.3	610,915 lb	305.5 tons	7,242	49.93	10.35%	12,167	83.89		2,909.7	20.06 19.49	4.16%	0.40	Yes	0.37	Yes
curve	vertical vertical	5119+07 5119+79	156+031 156+053	2,335.3	711.8 734.2	54.7 74.3	19.7 22.7	48.0	1219.2	0.3	621,608 lb	310.8 lons	7,369	50.81	10.53%	12,167	83.89		2,726.8	18.80	3.50%	0.40	Yes	0.36	Yes Yes
curve	vertical	5120+52	156+075		756.5	85.5	26.1	48.0	1219.2	0.3	639,513 lb	319.8 lons 326.4 lons	7,581	52.27	10.83%	12,167	83.89	17.38%		17.98	3.73%	0.41	Yes	0.35	Yes
curve	vertical	5121+24	156+097	2,555.2	778.8	98.1	29.9	48.0	1219.2	0.3	699,665 lb	349.8 lons	7,739 8,294	53.36 57.19	11.06%	12,167	83.89		2,471.3	17.04	3.53%	0.41	Yes	0.33	Yes
curve	vertical vertical	5121+96 5122+68	156+119 156+141	2,628.5	801,2	112.2	34.2	48.0	1219.2	0.3	715,092 lb	357.5 tons	8,477	58.45	12.11%	12,167	83.89	17.38%		14.78	3.31%	0.42	Yes Yes	0.32	Yes Yes
curve	vertical	5122+68	156+163	2,701.9	823.5 845.9	127.8	38.9 44.1	48.0	1219.2	0.3	730,257 lb	365.1 tons	8,657	59.69	12.37%	12,167	83.89	17.38%	1,952.7	13.46	2.79%	0.43	Yes	0.29	Yes
straight		5123+75	156+174	2,811.9	857.1	153,7	46.8	48.0	1219.2	0.3	745,150 lb 748,961 lb	372.6 tons 374.5 tons	8,833 8,879	60.90	12.62%	12,167	83.89	17.38%	1,744.0	12.02	2.49%	0.43	Yes	0.27	Yes
straight		5124+10	156+185	2,848.6	868.3	162,5	49.5	48.0	1219.2	0.3	752,772 lb	376.4 tons	8.924	61.53	12.75%	0	0.00	0.00%	1,635.0	11.27	2.34%	0.16 0.16	Yes	0.12	Yes
straight straight		5124+46 5124+81	156+195 156+206	2,885.3	879.5	171.4	52.2 55.0	48.0	1219.2	0.3	756,584 lb	378.3 tons	8,969	61.84	12.81%	0	0.00	0.00%	1,417.0	9.77	2.02%	0.16	Yes	0.11	Yes Yes
straight		5125+17	156+217		890.6 901.8	180.3	55.0	48.0 48.0	1219.2	0.3	760,395 lb 764,207 lb	380.2 tons	9,014	62.15	12.88%	0	0.00	0.00%	1,308.0	9.02	1.87%	0.16	Yes	0.10	Yes
straight		5125+53	156+228	2,995.5	913.0	198,1	60.4	48.0	1219.2	0.3	768,018 lb	382.1 lons 384.0 lons	9,059	62.46	12.94%	0	0.00	0.00%	1,199.0	8.27	1.71%	0.16	Yes	0.09	Yes
straight	0 72.10	5125+88	156+239	3,032.2	924.2	207.0	63.1	48.0	1219.2	0.3	771.829 lb	385.9 tons	9.150	63.08	13.07%	0	0.00	0.00%	1,090.0 981.0	7.52 6.76	1,56%	0.16	Yes	80.0	Yee .
straight straight		5126+24 5126+60	156+250 156+261	3,068.9	935.4 946.5	215.8	65.8	48.0	1219.2	0.3	775,641 lb	387.8 tons	9,195	63.40	13.14%	0	0.00	0.00%	872.0	6.01	1,25%	0.16	Yes	0.06	-
straight		5126+95	156+271	3,142.3	957.8	224.7	68.5 71.2	48.0 48.0	1219.2 1219.2	0.3	779.452 lb 783,264 lb	389.7 tons 391.6 tons	9,240	63.71	13.20%	0	0,00	0.00%	763.0	5.26	1.09%	0.17	Yes	0.06	
straight		5127+31	156+282	3,179,1	969.0	242.5	73.9	48.0	1219.2	0.3	787,075 lb	393.5 tons	9,285 9,330	64.02	13.26%	0	0.00	0.00%	654.0 545.0	4.51	0.93%	0.17	Yes	0.06	
straight		5127+66	156+293	3,215.8	980.2	251.4	76.6	48.0	1219.2	0.3	790,886 lb	395.4 lons	9,376	64.64	13.39%	0	0.00	0.00%	436.0	3.76	0.78%	0.17	Yes	0.06	
straight straight		5128+02 5128+38	156+304 156+315	3,252.5	991,4	260.2 269.1	79.3 82.0	48.0	1219.2	0.3	794.698 lb	397.3 lons	9,421	64.95	13.46%	0	0.00	0.00%	327.0	2.25	0.47%	0.17	Yes	0.05	Yes Yes
straight		5128+73	156+326	3,289.2	1,002.6	269.1	84.7	48.0	1219.2 1219.2	0.3	798,509 lb	399.3 tons	9,455	65.27	13.52%	0	0.00	0.00%	218.0	1.50	0.31%	0.17	Yes	0.04	Yes
DD Rig Location		5129+09	156+337		1,024.9	286.9	87.4	48.0	1219.2	0.3	802,321 lb 806,132 lb	401.2 lons 403.1 lons	9,511	65.58 65.69	13.59%	0	0.00	0.00%	0.0	0.75	0.16%	0.17	Yes	0.04	Yes
		205.50		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-				-		Lancing In L	10011 1010	3,000	05.05	13.03.9	- 0		stress take			0.00%	0.17	Yes with water with	0.04 buoyancy conti	Yes
Ground Eleva	ation at Pipe Entry		feet metres																	, pope 101	www.yalic	, como and t	····· water with	survining conti	IVI
Ground Ela	vation at Pipe Exit	286.90	feel								TOTAL DI	ILL LOADS	Ten nsi	sile (Axial MPa		nel E	Sending Stress	S CLOVE		loop Stress			Tensile and	Combined Ter	
Ground Ele	veson at Pipe Exit		metres							Maximum Values		403.1 tons	9,556	65.9	% SMYS 13.65%	12,167	MPa 83.9	% SMYS 17.38%	3,056	MPa 21.1	% SMYS		Factor 43		op Factor
t Pipe Properties										10				-	- I William Company				0,000	****	Tiber of	0.	70	1 0.	.39

Ground Elevation at Pipe Exit-	200.90	licet
Giddha Elevation at Pipe Ext	87.45	metres
put Pipe Properties		
Pipe Outer Diameter	36	in
Pipe Outer Diameter	914.4	mm
Pipe Wall Thickness	0.762	in
	19.3548	mm
DR	47.2	
Pipe Weight (in air)	287.04	lbs/ft
Pripe vveight (in air)	428.06	
Weight of Water in pipe	0.0	lbs/ft
evelget of evaler in pipe	0.00	kg/m
Net Buoyant Weight of pipe	-241.7	lbs/ft
Net buoyant weight of pipe	-360.42	kg/m
Young's Modulus of Elasticity	2.92E+07	psi
roung's modulus of classicity	201327	
Yield Strength	70,000	psl
riela strength	482.6	MPa
Poisson Ratio	0.3	
Delta Direction	6,625	In
Drill Pipe Diameter	168,275	mm
Minimum Radius of Curvature	2,500	R
Minimum Radius of Curvature	762	m
1220 1220 1200 1	3.542.953	lih
Ultimate Safe Pull Load	15,760	
110000-02000000000000	806,132	
Maximum Calculated Pull Load	3,586	
Factor of Safety	4.4	-
Start-Up Load Factor	2	
Maximum Calculated Start-Up Pipe Pull	1,612,264	lb
Load	7,172	
Factor of Safety	2.2	

Mud Weight -	10 ppg of drill fluid and solids (typically 9.5 to 11 lb/gal)
	1.199 Specific Gravity
Friction Coeff. (GS or rollers)	0.1 rollers typically 0.10 to 0.30 (along ground surface is higher range)
Yield Point	19.5 lb/100ft2 (Based on HDD experience from previous installations)
Heid Pulli	93,366 dyne/cm ²
Plastic Viscosity	13 cP (Based on HDD experience from previous installations)
Drilling mud pumping rate	600 GPM (typically 200 to 300 gpm for soil or 400 to 800 gpm bedrock)
Drining mod pumping race	2.271 m³/min
Drilling mud pumping rate	1129 GPM (equivalent mud rate accounting for siurry displaced by product pipe installation)
Drilling muo pumping rate	4.273 m³/min
Pipe Pullback Rate	10 feet/min (Based on HDD experience)
ripe Puliback Rate	3.05 m/min

M	
MOTT	M
DO	NALD

ontal Directional Drilling Lation of Pull Loads and Stresses during Pipe Installation

Calculated by:	M. Lockwood	
Checked by:	G. Duyvestyn	
Date:	4/19/2019	
Project No:	353754	

PROJECT: PennEast Pipeline Project - Case 2

HDD CROSSING LOCATION: Wickecheoke Creek

eference:
1. Installation of Pipelines by Hortzontal Directional Drilling, an Engineering Gulde, PRCI Publication 2015
2. Pipeline Design for Installation by Horizontal Directional Drilling, Manual of Practice, ASCE MREP 108, 2005

		112710000000000000000000000000000000000		Н	DD Instal	lation Lo	ad Anal	ysis				
Segment Type	Type of Curve	Bore Stat	loning	Installed	Length	Bora Ele	vation	Bore Dia	ameter	Geotechnical Friction Factor	TOTAL PULL	LOADS
	ŀ	feet	metres	foot	metres	feet	metres	Inch	mm			10.7.1
Pipe Entry Location		5096+00	155+328	0.0	0.0	325.6	99.2	-	-		99,394 lb	49.7 lon
straight		5096+82	155+353	83.8	25.5	308.1	93.9	48.0	1219.2	0.3	103,842 lb	51.9 ton
straight		5097+64	155+378	167.6	51.1	290.7	88.6	48.0	1219.2	0.3	108,289 lb	56.4 tor
straight		5098+46	155+403	251.4	76.6	273.3	83.3	48.0	1219.2	0.3	112,737 lb	58.6 tor
straight		5099+28	155+428	335.2	102.2	255.9	78.0	48.0	1219.2	0.3	117,185 lb	60.8 los
straight		5100+10	155+453	419.0	127.7	238.5	72.7	48.0	1219.2	0.3	129,084 lb	64.5 to
straight		5100+92	155+478	502.8	153.2	221.0	67.4	48.0	1219.2	0.3	129,054 lb	68.3 to
straight		5101+74	155+503	586.6	178.8	203.6	62.1	48.0	1219.2	0.3	143,986 lb	72.0 to
straight		5102+56	155+528	670.3	204.3	186.2	56.8	48.0	1219.2	0.3	151,437 lb	75.7 to
straight		5103+38	155+553	754.1	229.9	168.8	51.4	48.0	1219.2	0.3	158,888 lb	79,4 to
straight		5104+20	155+578	837.9	255.4	151.3	46.1 40.8	48.0	1219.2	0.3	166,339 lb	83.2 to
straight		5105+02	155+603	921.7	280.9 306.5	133.9	35.5	48.0	1219.2	0.3	173,790 lb	86.9 to
straight	- Wash	5105+84	155+628 155+642	1,005.5	320.9	107.0	32.6	48.0	1219.2	0.3	217,820 lb	108.9 to
curve	vertical vertical	5105+30 5106+76	155+656	1,052.8	335.2	98.1	29.9	48.0	1219.2	0.3	216,569 lb	108.3 to
curve	vertical vertical	5106+76	155+670	1,146.9	349.6	89.8	27.4	48.0	1219.2	0.3	196,773 lb	98.4 to
curve	vertical vertical	5107+22	155+684	1,194.0	363.9	82.2	25.0	48.0	1219.2	0.3	185,267 lb	92.6 to
curve	vertical	5107+69	155+698	1,241.1	378.3	75.1	22.9	48.0	1219.2	0.3	177,127 lb	88.6 to
curve	vertical	5108+62	155+713	1,288.3	392.7	68.6	20.9	48.0	1219.2	0.3	183,100 lb	91.6 to
curve	vertical	5109+09	155+727	1,335.4	407.0	62.8	19.1	48.0	1219.2	0.3	189,857 lb	94.9 to
CUITAG	vertical	5109+56	155+741	1,382.5	421.4	57.6	17.5	48.0	1219.2	0.3	196,067 lb	98.0 to
CULAG	vertical	5110+03	155+755	1,429.6	435.8	52.9	16.1	48.0	1219.2	0.3	201,921 lb	101.0 to
curve	vertical	5110+50	155+770	1,476.8	450.1	48.9	14.9	48.0	1219.2	0.3	207,536 lb	103.8 to
curve	vertical	5110+97	155+784	1,523.9	464.5	45.5	13.9	48.0	1219.2	0.3	212,983 lb	109.2 to
curve	vertical	5111+44	155+798	1,571.0	478.8	42.8	13.0	48.0	1219.2	0.3	218,310 lb 223,553 lb	111.8 to
curve	vertical	5111+91	155+613	1,618.1	493.2	40.6	12.4	48.0	1219.2	0.3	228,734 lb	114.4 10
curve	vertical	5112+38	155+827	1,665.3	507.6	39.1	11.9	46.0	1219.2	0.3	233,873 lb	116.9 (
curve	vertical	5112+85	155+842	1,712.4	521.9 536.3	38.1	11.6	48.0	1219.2	0.3	238,984 lb	119.5 to
curve	vertical	5113+32	155+856 155+866	1,759.5	546.7	37.8	11.5	48.0	1219.2	0.3	243,222 lb	121.6 to
straight		5113+66 5114+00	155+877	1,827.5	557.0	37.8	11.5	48.0	1219.2	0.3	247,460 lb	123.7 to
straight		5114+34	155+887	1,861.5	567.4	37.8	11.5	48.0	1219.2	0.3	251,698 lb	125.8 (
straight		5114+34	155+897	1,895.5	577.8	37.8	11.5	48.0	1219.2	0.3	255,936 lb	128.0 1
straight curve	vertical	5115+41	155+920	1,968.8	600.1	38.6	11.8	48.0	1219.2	0.3	284,516 lb	142.3 to
curve	vertical	5116+15	155+942	2,042.1	622.4	40.8	12.4	46.0	1219.2	0.3	283,492 lb	141.7 (
curve	vertical	5116+88	155+964	2,115.4	644.8	44.6	13.6	48.0	1219.2	0.3	271,046 lb	135.5 t
curve	vertical	5117+61	155+987	2,188.7	667.1	49.8	15.2	48.0	1219.2	0.3	274,282 lb	137.1 (
curve	vertical	5118+34	156+009	2,262.0	689.5	56.5	17.2	48.0	1219.2	0.3	286,052 lb	143.0 1
curve	vertical	5119+07	156+631	2,335.3	711.8	64.7	19.7	48.0	1219.2	0.3	29C,795 lb	148,4 t
curve	vertical	5119+79	156+053	2,408.6	734.2	74.3	22.7	48.0	1219.2	0.3	306,961 lb	153.5 t
curve	vertical	5120+52	156+075	2,481.9	756.5	85.5	26.1	48.0	1219.2	0.3	316,774 lb 326,363 lb	163.2 1
curve	vertical	5121+24	156+097	2,555.2	778.8	98.1	29.9 34.2	48.0	1219.2	0.3	335,810 lb	167.9 (
curve	vertical	5121+96	156+119	2,628.5	801.2	112.2	38.9	48.0	1219.2	0.3	345,172 lb	172.6
curve	vertical	5122+68	155+141	2,701.9	823.5 845.9	127.8	44,1	48.0	1219.2	0.3	354,487 lb	177.2 (
curve	vertical	5123+39	156+163 156+174	2,775.2	857.1	153.7	46.8	48.0	1219.2	0.3	360,417 lb	180.2 1
straight		5123+75 5124+10	156+185	2,848.6	858.3	162.5	49.5	48.0	1219.2	0.3	366,347 lb	183.2 1
straight	-	5124+10	156+195	2,885.3	879.5	171.4	52.2	48.0	1219.2	0.3	372,277 lb	186.1
straight		5124+81	156+206	2,922.0	890.6	180.3	55.0	48.0	1219.2	0.3	378,207 lb	189.1
straight straight	-	5125+17	156+217	2,958.7	901.8	189.2	57.7	48.0	1219.2	0.3	384,137 lb	192.1
straight		5125+53	156+228	2,995.5	913.0	198.1	60.4	48.0	1219.2	0.3	390,067 lb	195.0
raight		5125+88	156+239	3,032.2	924.2	207.0	63.1	48.0	1219.2	0.3	395,998 lb	198.0 201.0
aight		5126+24	156+250	3,068.9	935.4	215.8	65.8	48.0	1219.2	0.3	401,928 lb 407,858 lb	201.0
aight		5126+60	156+261	3,105.6	946.6	224.7	68.5	48.0	1219.2	0.3	407,858 lb	205.9
raight		5126+95	156+271	3,142.3	957.8	233.6	71.2	48.0	1219.2	0.3	413,788 Ib	209.9
straight		5127+31	156+282	3,179.1	969.0	242.5	73.9	48.0	1219.2	0.3	425,648 lb	212.8
straight		5127+66	156+293	3,215.8	980.2	251.4	76.6	48.0	1219.2		431,578 lb	215.8
straight		5128+02	155+304	3,252.5	991.4 1,002.6	260.2	79.3 82.0	48.0	1219.2	0.3	437,508 lb	218.8
straight		5128+38	156+315			269.1	84.7	48.0	1219.2	0.3	443,438 lb	221.7
straight		5128+73 5129+09	156+326 156+337	3,325.9	1,013.8	286.9	87.4	48.0	1219.2		449,368 lb	224.7
HDD Rig Location		0120.00			-							

				Н	IDD Insta	llation S	tress Ar	nalysis				
Tens	ils (Axial)	Stress	Ben	ding Stres	Н	oop Stress		Combined Tensile and Bending Factor	CombinedTe nsile and Bending <1.0	Combined Tensile, Bending and Hoop Factor		
psi	MPa	% SMYS	psi	MPa	% SMYS	psi	MPa	% SMYS		W	0.00	Yes
1,178	8.12	1.68%	0	0.00	0.00%	0.0	0.00	0.00%	0.02	Yes	0.00	Yes
1,231	8.49	1.76%	0	0.00	0.00%	35.4	0.24	0.05%	0.02	Yes	0.00	Yes
1,284	8.85	1.83%	0	0.00	0.00%	70.9 106.3	0.49	0.10%	0.02	Yes	0.00	Yes
1,336	9.21	1.91%	0	0.00	0.00%	141.8	0.73	0.15%	0.02	Yes	0.00	Yes
1,389	9.58	1.98%	0	0.00	0.00%	177.2	1.22	0.25%	0.03	Yes	0.00	Yes
1,442	9.94	2.06%	0	0.00	0.00%	134.0	0.92	0.19%	0.03	Yes	0.00	Yes
1,530	10.55	2.19%	0	0.00	0.00%	169.4	1,17	0.24%	0.03	Yes	0.00	Yes
1,707	11.77	2.44%	0	0.00	0.00%	204.9	1.41	0.29%	0.03	Yes	0.00	Yes
1,795	12.38	2.56%	0	0.00	0.00%	240.3	1.66	0.34%	0.03	Yes	0.00	Yes
1,384	12.99	2.69%	0	0.00	0.00%	275.7	1.90	0.39%	0.03	Yes	0.00	Yes
1,972	13.60	2.82%	0	0.00	0.00%	311.2	2.15	0.44%	0.04	Yes	0.00	Yes Yes
2,060	14.20	2.94%	0	0.00	0.00%	346.6	2.39	0.50%	0.04	Yes Yes	0.01	Yes
2,582	17.30	3.69%	12,167	83.89	17.38%	365.9	2.52	0.52%	0.32	Yes	0.08	Yes
2,567	17.70	3.67%	12,167	83.89	17,38%	384.0 400.9	2.65	0.55%	0.32	Yes	0.08	Yes
2,333	16.08	3.33%	i2,167 12,167	83.89 83.89	17.38%	416.5	2.87	0.59%	0.31	Yes	0.08	Yes
2,196	15.14 14.48	3.14%	12,167	83.89	17.38%	430.8	2.97	0.62%	0.31	Yes	0.08	Yes
2,100	14.97	3.10%	12,167	83.89	17.38%	444.0	3.05	0.63%	0.31	Yes	0.08	Yes
2,251	15.52	3.22%	12,167	83.89	17.38%	455.9	3.14	0.65%	0.31	Yes	0.08	Yos
2,324	16.03	3.32%	12,167	83.89	17.38%	465.5	3.22	0.67%	0.31	Yes	0.08	Yes
2,394	16.50	3.42%	12,167	83.89	17.38%	475.9	3.28	0.68%	0.31	Yes Yes	0.08	Yes
2,460	16.96	3.51%	12,167	83.89	17.38%	484.1 490.9	3.34	0.69%	0.32	Yes	0.08	Yes
2,525	17.41	3.61%	12,167	83.89 83.89	17.38%	490.9	3.42	0.71%	0.32	Yes	0.08	Yes
2,588	17.84	3.70%	12,167	83.89	17,38%	501.0	3.45	0.72%	0.32	Yes	0.08	Yes
2,650	18.27	3.79%	12,167	83.89	17.38%	504.1	3.48	0.72%	0.32	Yes	0.09	Yes
2,712	19.12	3.96%	12,167	83.89	17 38%	506.0	3.49	0.72%	0.32	Yes	0.09	Yes
2,833	19.53	4.05%	12,157	83.89	17.38%	506.6	3.49	0.72%	0.32	Yes	0.09	Yes Yes
2,383	19.88	4.12%	0	0.00	0.00%	506.6	3.49	0.72%	0.05	Yes	0.01	Yes
2,934	20.23	4.19%	0	0.00	0.00%	506.6 506.6	3.49	0.72%	0.05	Yes	0.01	Yes
2,984	20.57	4.26%	0	0.00	0.00%	506.6	3.49	0.72%	0.05	Yes	0.01	Yes
3,034	20.92	4.33%	12,167	83.89	17,38%	505.1	3.48	0.72%	0.33	Yes	0.09	Yes
3,373	23.25	4.80%	12,167	83.89	17,38%	50G.6	3.45	0.72%	0.33	Yes	0.09	Yes
3,213	22.15	4.59%	12,167	83.89	17.38%	423.0	3.40	0.70%	0.33	Yes	0.09	Yes
3,251	22.42	4.64%	12,167	83.89	17.38%	482.3	3.33	0.69%	0.33	Yes	0.09	Yes
3,391	23.38	4.84%	12,167	83.89	17.38%	468.7 452.0	3.23	0.67%	0.33	Yes	0.09	Yes
3,518	24.26	5.03%	12,167	83.89	17.38%	432.4	3.12	0.62%	0.34	Yes	0.09	Yes
3,639	25.09	5.20% 5.36%	12,167	83.89 83.89	17.38%	432.4	2.82	0.52%	0.34	Yes	0.09	Yes
3,755	25.89 26.67	5.53%	12,167	83.89	17.38%	384.0	2.65	0.55%	0.34	Yes	0.09	Yes
3,869	27.45	5.69%	12,167	83.89	17.38%	355.3	2.45	0.51%	0.34	Yes	0.09	Yes
4,092	28.21	5.85%	12,167	83.89	17.38%	323.7	2.23	0.46%	0.35	Yes	0.09	Yes Yes
4,202	28.97	6.00%	12,167	83.89	17.38%	289.1	1.99	0.41%	0.35	Yes	0.09	Yes
4,273	29.46	6.10%	0	0.00	0.00%	271.0 253.0	1.87	0.39%	80.0	Yes	0.01	Yes
4,343	29.94	6.20%	0	0.00	0.00%	234.9	1.62	0.34%		Yes	0.01	Yes
4,413	30.43	6.40%	0	0.00	0.00%	216.8	1.49	0.31%	0.08	Yes	0.01	Yes
4,483	31,40	6.51%	0	0.00	0.00%	198.8	1.37	0.28%	0.08	Yes	0.01	Yes
4,624	31.88	6.61%	0	0.00	0.00%	180.7	1.25	0.26%		Yes	0.01	Yes Yes
4,694	32.37	6.71%	0	0.00	0.00%	162.6	1.12	0.23%		Yes	0.01	Yes
4,765	32.85	6.81%	0	0.00	0.00%	144.6	0.87	0.21%		Yes	0.01	Yes
4,835	33.34	6.91%	0	0.00	0.00%	108.4	0.87	0.15%		Yes	0.01	Yes
4,905	33.82	7.01%	0	0.00	0.00%	90.3	0.62	0.13%		Yes	0.01	Yes
4,976 5,046	34.31	7.11%	0	0.00	0.00%	72.3	0.50	0.10%	0.09	Yes	0.01	Yes
	35.27	7.31%	0	0.00	0.00%	54.2	0.37	0.08%		Yes	0.01	Yes
5 116					0.00%	36.1	0.25	0.05%		Yes	0.01	Yes
5,116	35.76	7.41%	0	0.00								
5,116 5,186 5,257 5,327		7.41% 7.51% 7.61%	0	0.00	0.00%	18.1	0.12	0.03%	0.09	Yes Yes	0.01	Yes

	99.23	metres
	286.90	feet
Ground Elevation at Pipe Exit	87.45	metres
nput Pipe Properties		
	36	in
Pipe Outer Diameter	914.4	mm
	0.762	in
Pipe Wall Thickness	19.3548	mm
DR	47.2	
	287.04	lbs/ft
Pipe Welght (in air)	428.06	
	404.5	lbs/ft
Weight of Water in pipe	603.26	
	162.8	lbs/ft
Net Buoyant Weight of pipe	242.84	kg/m
	2.92E+07	
Young's Modulus of Elasticity	201327	MPa
Yield Strength	70,000	
Yield Strength	482.6	MPa
Poisson Ratio	0.3	
A 10.01 B: 1	6.625	in
Drill Pipe Diameter	168.275	
Minimum Radius of Curvature	2,500	n
Minimum Radius di Curvature	762	m
	3,542,953	Blb
Ultimate Safe Pull Load	15,760	
	449,368	
Maximum Calculated Pull Load	1,999	
Factor of Safety	7.5	
Start-Up Load Factor		2
Maximum Calculated Start-Up Pipe Pull	898,73	
Load	3,99	
Factor of Safety	3.5	9

		Ter	nsile (Axial) Stress	В	lending Stres	s		Hoop Stress			Combined Tensile, Bendi
	TAL PULL LOADS	psi	MPa	% SMYS	psi	MPa	% SMYS	psi 507	MPa 3.6	% SMYS 0.72%	Bending Factor 0.35	0.09
Maximum Values 449,36	lb 224.7 tons	5,327	36.7	7.61%	12,167	83.9	17.30%	307	3.0	U.I.E.W		

14 - 4 104 - 7 - 14	10 ppg of drill fluid and solids (typically 9.5 to 11 lb/gal)
Mud Weight	1,199 Specific Gravity
Friction Coeff. (GS or rollers)	0.1 rollers typically 0.10 to 0.30 (along ground surface is higher range)
	19.5 lb/100ft2 (Based on HDD experience from previous installations)
Yield Point	93,366 dyne/cm ²
Plastic Viscosity	13 cP (Based on HDD experience from previous installations)
	600 GPM (typically 200 to 300 gpm for soil or 400 to 800 gpm bedrock)
Drilling mud pumping rate	2.271 m³/min
	1129 GPM (equivalent mud rate accounting for slurry displaced by product pipe installation)
Drilling mud pumping rate	4.273 m³/min
	10 feel/min (Based on HDD experience)
Pipe Pullback Rate	3.05 m/min

M	
MOTT MACDO	NALD

Horizontal Directional Drilling Calculation of Pull Loads and Stresses during Pipe Installation

Calculated by:	M. Lockwood	
Checked by:	G. Duyvestyn	
Date:	4/19/2019	
Project No:	353754	

PROJECT: PennEast Pipeline Project - Case 3

HDD CROSSING LOCATION: Wickecheoke Creek

Installation of Pipelines by Horizontal Directional Drilling, an Engineering Guide, PRCI Publication 2015
 Pipeline Peeline for Installation by Horizontal Directional Drilling, and Engineering Guide, PRCI Publication 2015

			1	HDD Insta	lilation L	oad Ana	lysis		T					1		HDD Inst	allation	Stress /	Analysis	
Segment Type	Type of Curve	Bore Stationing	Installe	d Length	Bore E	levation	Bore I	Diameter	Geotechnical Friction Factor	TOTAL P	ULL LOADS	Tonsile (A	rial) Stress	В	ending Str	ess		Hoop Stre	ss	Combined Tensile and Bending
Pipe Entry Location		feet metres 5096+00 155+328	foot 0.0	metres 0.0	feet 325.6	motres 99.2	Inch	mm	1	99,394 lb	49.7 tons	psi MPa 1,178 8.12		psi	MPa	% SMYS	psi	MPa	% SMYS	Factor
straight straight		5096+82 155+353 5097+64 155+378	83.8 167.6	25.5 51.1	308.1 290.7	93.9 88.6	48.0 48.0	1219.2	0.3	115,049 lb	57.6 tons	1,364 9.40	1.95%	0	0.00	0.00%	235.1	1.62	0.00%	0.02
straight		5098+46 155+403	251.4	76.6	273.3	83.3	48.0	1219.2	0.3	130,704 lb	65.4 lons 73.2 lons	1,549 10.6 1,735 11.9		0	0.00	0.00%	470.3 705.4	3.24 4.85	0.67%	0.03
straight straight		5099+28 155+428 5100+10 155+453	335.2 419.0	102.2	255.9 238.5	78.0 72.7	48.0	1219.2	0.3	167,447 lb	83.7 tons 94.3 tons	1,985 13.6	9 2.84%	0	0.00	0.00%	418.7	2.69	0.60%	0.04
straight		5100+92 155+478	502.8	153.2	221.0	67.4	48.0	1219.2	0.3	209,622 lb	104.8 tons	2,235 15.4 2,485 17.1		0	0.00	0.00%	653.9 889.0	4.51 6.13	0.93%	0.04
straight straight		5101+74 155+503 5102+56 155+528	586.6 670.3	178.8	203.6 186.2	62,1 56.8	48.0 48.0	1219.2 1219.2	0.3	230,710 lb	115.4 lons 125.9 lons	2,735 18.8 2,985 20,5		0	0.00	0.00%	1,124.2	7.75 9.37	1.61%	0.05
straight straight		5103+38 155+553 5104+20 155+578	754.1 837.9	229.9 255.4	168.8 151.3	51.4 46.1	48.0 48.0	1219.2	0.3	272,884 lb	136.4 tons	3,235 22.3	4.62%	0	0.00	0.00%	1,594.4	10.99	2.28%	0.05
straight		5105+02 155+603	921.7	280.9	133.9	40.8	48.0	1219.2	0.3	293,972 lb 315,059 lb	147.0 tons 157.5 tons	3,485 24.0 3,735 25.7		0	0.00	0.00%	1,829.6	12.61	2.61%	0.06
straight curve	vertical	5105+84 155+628 5106+30 155+642	1,052.6	306.5 320.9	116.5	35.5 32.6	48.0 48.0	1219.2	0.3	336,147 lb 303,164 lb	168.1 tons 191.6 tons	3,985 27.4 4,642 31.3	7 5.69% 2 6.49%	12,167	0.00	0.00%	2,299.9	15.86	3.29%	0.07
curve	vertical vertical	5106+76 155+656 5107+22 155+670	i,099.8 1,146.9	335.2 349.6	98.1 89.8	29.9 27.4	48.0 48.0	1219.2	0.3	377,091 lb 400,373 lb	188.5 tons	4,470 30.8	6.39%	12,167	83.89	17.38%	2,548.1	16.74 17.57	3.47%	0.35
curve	vertical vertical	5107+69 155+684 5108+15 155+698	1,194.0	363.9	82.2	25.0	48.0	1219.2	0.3	425,229 lb	200.2 tons 212.6 tons	4,746 32.7 5,041 34.7	7.20%	12,167	83.89 83.89	17.38%	2,763.5	18.34	3.80%	0.36
curve	vertical	5108+62 155+713			75.1 68.6	22.9	48.0 48.0	1219.2	0.3	436,015 lb 448,270 lb	218.0 tons 224.1 tons	5,169 35.6 5.314 36.6		12,167	83.89 83.89		2,858.9	19.71	4.08%	0.36
curve	vertical vertical	5109+09 155+727 5109+56 155+741	1,335.4	407.0	62.8 57.6	19.1	48.0	1219.2	0.3	461.271 lb 474,649 lb	230.6 tons 237.3 tons	5,468 37.7 5,627 38.7		12,167	83.89	17.38%	3,024.9	20.88	4 32%	0.37
curve	vertical vertical	5110+03 155+755 5110+50 155+770	1,429.6	435.8	52.9	16.1	48.0	1219.2	0.3	488,202 ib	244.1 lans	5,787 39.9	8.27%	12,167 12,167	83.89 83.89	17.38%	3,095.5	21.34	4.42%	0.37 0.38
curve	vertical	5110+97 155+784		464.5	48.9 45.5	14.9 13.9	48.0 48.0	1219.2	0.3	501,810 lb 515,398 lb	250.9 tons 257.7 tons	5,949 41.0 6,110 42.1		12,167 12,167	83.89 83.89	17.38%	3,211.9	22.15	4.59%	0.38
curve	vertical vertical	5111+44 155+798 5111+91 155+813	1,571.0	478.8 493.2	42.8 40.6	13.0	48.0 48.0	1219.2	0.3	528,923 lb 542,357 lb	264.5 tons	6,270 43.2	8.96%	12,167	83.89	17.38%	3,295.1	22.45	4.71%	0.38
curve	vertical	5112+38 155+027	1,665.3	507.6	39.1	11.9	48.0	1219.2	0.3	555,683 lb	271.2 tons 277.8 tons	6,429 44.3 6,587 45.4	9.41%	12,167	83.89	17.38%		22.92	4.75%	0.39
curve	vertical vertical	5112+85 155+842 5113+32 155+856		536.3	38.1 37.8	11.6 11.5	48.0 48.0	1219.2	0,3	568,894 lb 581,982 lb	284.4 lons 291.0 lons	6,744 46.5 6,899 47.5	9.63%	12,167 12,167	83.89 83.89	17.38%		23.15	4.80%	0.39
straight straight		5113+66 155+866 5114+00 155+877	1,793.5		37.8 37.8	11.5	48.0 48.0	1219.2	0.3	588,571 lb	294.3 lons	6,977 48,1	9.97%	0	0.00	0.00%	3,361.7	23.18	4.80%	0.40
straight		5114+34 155+887	1.861.5	567.4	37.8	11.5	48.0	1219.2 1219.2	0.3	595,161 lb G01,750 lb	297.6 tons 300.9 tons	7,055 48.6 7,133 49.1		0	0.00		3,361.7	23.18	4,80%	0.13 0.13
straight curve	vertical	5114+68 155+897 5115+41 155+920	1,895.5 1,968.8	577.B 600.1	37.8 38.6	11.5	48.0	1219.2	0.3	608,339 lb 648,898 lb	304.2 tons 324.4 tons	7,212 49.7 7,692 53.0		12,167	0.00	0.00%	3,361.7	23.18	4.80%	0.13
curve	vertical vertical	5116+15 155+942	2 042.1 2,115.4	622.4	40.8 44.6	12.4 13.6	48.0	1219.2	0.3	648,125 lb	324.1 tons	7,683 52.9	10.98%	12,167	83.89	17.38%	3,321,4	23.11	4.79%	0.41
curve	vertical	5117+61 155+987	2.188.7	667.1	49.8	15.2	48.0 48.0	1219.2 1219.2	0.3	674,627 lb	337.3 tons 341.4 tons	7,997 55.1- 8,094 55.8	11.42%	12,167 12,167	83.89 83.69	17.38%	3,271,1		4.57%	0.42 0.42
curve	vertical vertical	5119+07 156+031	2,262.0 2,335.3	711.8	55.5 64.7	17.2	48.0 48.0	1219.2	0.3	705,238 lb 718,701 lb	352.6 tons 359.4 tons	8,094 55.8 8,360 57.6 8,520 58.7	11,94%	12,167	83.89	17.38%	3,110.1	21.44	4.44%	0.42
curve	vertical vertical	5119+79 156+053 5120+52 156+075	2.408.6	734.2	74.3 85.5	22.7	48.0	1219.2	0.3	739,299 lb	369.6 tons	8,764 60.43	12.52%	12,167	83.89	17,38%		20.68	4.29%	0.42 0.43
curve	vertical	5121+24 156+097	2,555.2	778.8	98.1	29.9	48.0 48.0	1219.2	0.3	755,279 lb 810,055 lb	377.6 tons 405.0 tons	8,953 61.73 9,603 65.2	12.79%	12,167 12,167	83.89 83.89	17,38%	2,718.4	18.74	3.88%	0.43
curve	vertical vertical	5121+96 156+119 5122+68 156+141		801.2 823.5	112.2	34.2 38.9	48.0 48.0	1219.2 1219.2	0.3	827,928 lb 845,463 lb	414.0 tons 422.7 tons	9,815 67.6	14.02%	12,167	83.89	17.38%	2,357.9	16.26	3.37%	0.45
curve straight	vertical	5123+39 156+163 5123+75 156+174	2,775.2	845.9 857.1	144.8 153.7	44.1 46.8	48.0	1219.2	0.3	862,655 lb	431.3 lons	10,226 70.5	14,61%	12,167 12,167	83.89 83.89	17.38%	2,147.9 1,918.4	14.81	2,74%	0.45
straight		5124+10 156+185	2 848 6	868.3	162.5	49.5	48.0	1219.2	0.3	866,986 lb 871,316 lb	433.5 tons 435.7 tons	10,278 70.8 10,329 71.2	14.68%	0	0.00	0.00%	1,798.5	12.40	2.57%	0.18 0.18
straight straight		5124+46 156+195 5124+81 156+206	2,885.3	879.5 890.6	171.4 180.3	52.2 55.0	48.0 48.0	1219.2 1219.2	0.3	875,647 lb 879,978 lb	437.8 tons 440.0 tons	10,380 71.5	14.83%	0	0.00	0.00%	1,558.7	10.75	2.23%	0.19
straight straight		5125+17 156+217 5125+53 156+228	2.958.7	901.8	189.2	57.7 60.4	48.0	1219.2	0.3	884,309 lb	442.2 lons	10,432 71.93 10,483 72.28	14.98%	0	0.00	0.00%	1,438,8	9.92	1.88%	0.19
straight		5125+88 156+239	3,032.2	924.2	198,1 207.0	63.1	48.0 48.0	1219.2 1219.2	0.3 0.3	888,639 lb 892,970 lb	444.3 lons 446.5 lons	10.534 72.63	15.05%	0	0.00	0.00%	1,199.0	8.27 7.44	1.71%	0.19
straight straight		5126+24 156+250 5126+60 156+261	3,068,9	935,4 946,6	215.8	65.8 68.5	48.0 48.0	1219.2 1219.2	0.3	897,301 lb 901,631 lb	448.7 lons 450.8 lons	10,586 72.99 10,637 73.34	15.12% 15.20%	0	0.00	0.00%	959.2	6.61	1.37%	0.19
straight		5126+95 156+271	3,142.3	957.8 969.0	233.6	71.2	48.0	1219.2	0.3	905,962 lb	453,0 tons	10,688 73.69 10,740 74.09	15.34%	0	0.00	0.00%	839.3 719.4	5.79 4.96	1.20%	0.19 0.19
straight straight		5127+31 156+282 5127+66 156+293	3.215.8	980.2	242.5 251.4	73.9 76.6	48.0 48.0	1219.2 1219.2	0.3	910,293 lb	455.1 lons 457.3 lons	10,791 74.40 10,842 74.70	15.42%	0	0.00	0.00%	599.5 479.6	4.13	0.86%	0.19
straight straight		5128+02 156+304 5128+38 156+315	3.252.5	991.4 1,002.6	260.2 269.1	79.3 82.0	48.0 48.0	1219.2 1219.2	0.3	918,954 lb	459.5 tons	10,894 75.1	15.56%	0	0.00	0.00%	359.7	2.48	0.69%	0.19
straight		5128+73 156+326	3,325.9	1,013.8	278.0	84.7	48.0	1219.2	0.3	923,285 lb 927,616 lb	461.6 tons 463.8 tons	10,945 75.46 10,996 75.83	15.64%	0	0.00	0.00%	239.8 119.9	1.65	0.34%	0.20
HDD Rig Location		5129+09 156+337 325.56 feet	3,362.7	1,024.9	286.9	87.4	48.0	1219.2	0.3	931,946 lb	466.0 lons	11,048 76.17	15.78%	0	0.00	0.00%	0.0	0.00	0.00%	0.20 cy control and w
	ation at Pipe Entry- vation at Pipe Exit-	99.23 metres 286.90 feet								TOTAL PI	JLL LOADS	Tensile (A)	al) Stress % SMYS	B	inding Stre	% SMYS		Hoop Stres	5	Cambined T
put Pipe Properties	vacon at ripe Exit	87.45 metres							Maximum Values	931,946 lb	466.0 tons	11,048 76.2	15.78%	12,167	83.9	17.38%	3,362	23.2	% SMYS 4.80%	Bending 0.4
	e Outer Diameter	36 in 914.4 mm																		
Pip	e Wall Thickness	0.762 in 19.3548 mm																		
	DR	47.2																		
P	pe Weight (in air)	287.04 lbs/ft 428.06 kg/m																		
Weigh	nt of Water in pipe	0.0 lbs/ft 0.00 kg/m																		
Net Buoya	ant Weight of pipe	-294.6 lbs/ft																		
	dulus of Elasticity	-439.27 kg/m 2.92E+07 psl																		
realig a Mic		201327 MPa 70,000 psl																		
	Yield Strength	482.6 MPa																		
r	Poisson Ratio hill Pipe Diameter	0.3 6.625 in																		
1. North-14. 17.07 N		168.275 mm 2,500 ft																		
Minimum Ra	adius of Curvature	762 m																		
Ultima	ste Safe Pull Load	3,542,953 lb 15,760 kN																		
Maximum Ca	culated Pull Load	931.946 lb																		
	Factor of Safety	4,146 kN 3.8																		
Sta	rt-Up Load Factor	2 1,863,892 lib																		
Maximum Calcudated	Load	8,291 kN																		
Maximum Calculated	Factor of Safety	1.9																		
Maximum Calculated	los		luid and sol	ids (typically	9.5 to 11 lb/	gal)														
Maximum Calculated		11 ppg of drift 1				o la blabas	rance)	1												
Maximum Calculated	Mud Weight eff. (GS or rollers)	1.319 Specific Gri	ally 0.10 to 0	0.30 (along g	round surfac	e is inginer														
Maximum Calculated	Mud Weight -	1.319 Specific Gra 0.1 rollers typic 19.5 lb/1000² (Ba	ally 0.10 to 0 used on HDI	0.30 (along g D experience	from previo	us installatio	ons)	1												
Maximum Calculated	Mud Weight eff. (GS or rollers)	1.319 Specific Gri 0.1 rollers typic 19.5 lb/100f ² (Bi 93.366 dyne/cm ² 13 cP (Based e	ally 0.10 to 0 used on HDI on HDD exp	D experience erience from	from previous ins	us installations)	ons)]]												
Maximum Calculated oil and Mud Propert Friction Co	Mud Weight eff. (GS or rollers) Yield Point	1.319 Specific Gr. 0.1 collers typic 19.5 lb/100n² (Bi 93.366 dyne/cm² 13 cP (Based of 600 GPM (typica 2.271 m³/min	ally 0.10 to 0 used on HDI on HDD exp ally 200 to 3	D experience erience from 60 gpm for so	previous ins previous ins previous ins previous ins	us installations) stallations) 800 gpm be	drock)] }												
Maximum Calculated oil and Mud Propert Friction Co	Mud Weight eff. (GS or rollers) Yield Point- Plastic Viscosity	1.319 Specific Gr. 0.1 rollers typic 19.5 lb1100n² (8: 93.365 dyne/cm² 13 cP (Based 600 GPM (typic 2.271 m³/min 1129 GPM (equi	ally 0.10 to 0 used on HDI on HDD exp ally 200 to 3	D experience erience from 60 gpm for so	previous ins previous ins previous ins previous ins	us installations) stallations) 800 gpm be	drock)] pe installatio	on)											
Maximum Calculated oil and Mud Propert Friction Co Drilling to	Mud Weight eff. (GS or rollers) Yield Point Plastic Viscosity mud pumping rate	1.319 Specific Gr. 0.1 collers typic 19.5 lb/100n² (Bi 93.366 dyne/cm² 13 cP (Based of 600 GPM (typica 2.271 m³/min	ally 0.10 to 0 ased on HDI on HDD exp ally 200 to 30 valent mud a	D experience erience from 60 gpm for so rate accounting	from previous ins previous ins pil or 400 to ng for slurry	us installations) stallations) 800 gpm be	drock)] pe installatio	on)											

Combined Tensile, Ben and Hoop Factor 0.45

ontal Directional Drilling lation of Pull Loads and Stresses during Pipe Installation

Calculated by:	M. Lockwood	
Checked by:	G. Duyvestyn	
Date:	4/19/2019	
Project No:	353754	

PROJECT: PennEast Pipeline Project - Case 4

HDD CROSSING LOCATION: Wickecheoke Creek

Reference:	1.	Installation of Pipelines by Horizontal Dir

Installation of Pipelines by Horizontal Directional Drilling, an Engineering Gulde, PRCI Publication 2015
 Pipeline Design for Installation by Horizontal Directional Drilling, Manual of Practice, ASCE MREP 108, 2005

			HDD Inst	allation Load Anal	vsis					HDD Ins	tallation Stress Analysis			
Segment Type	Type of Curve	Bore Stationing	Installed Length	Bore Elevation	Bore Diameter	Geotechnical Friction Factor	TOTAL PUL	LL LOADS	Tensile (Axial) Stress	Bending Stress	Hoop Stress	Combined Tensile and Bending Factor	CombinedTe Combinents of the combined Combined Combined Combines Combined C	, Tensile, and Bending and
		feet metres 5096+00 155+328	feet metres 0.0 0.0	feet metres 325.6 99.2	Inch mm		99,394 lb	49.7 tons	psi MPa % SMYS 1,178 8.12 1.68%	psl MPa % SMYS 0 0.00 0.00%	psi MPa % SMYS 0.0 0.00 0.00%	0.02	Yes 0.00	Yes
Pipe Entry Location straight		5096+82 155+353		308.1 93.9	48.0 1219.2	0.3	103,463 lb	51.7 tons	1,226 8.46 1.75%	0 0.00 0.00%	56.8 0.39 0.08%	0.02	Yes 0.00	Yes
straight		5097+64 155+378	167.6 51.1	290.7 88.6	48.0 1219.2	0.3	107,532 lb	53.8 tons	1,275 8.79 1.82%		113.6 0.78 0.16%	0.02	Yes 0.00 Yes 0.00	Yes Yes
straight		5098+46 155+403		273.3 83.3	48.0 1219.2	0.3	111,601 lb	55.8 tons	1,323 9.12 1.89% 1,395 9.62 1.99%	0 0.00 0.00% 0 0.00 0.00%	170.4 1.18 0.24% 101.2 0.70 0.14%	0.02	Yes 0.00 Yes 0.00	Yes
straight		5099+28 155+428 5100+10 155+453		255.9 78.0 238.5 72.7	48.0 1219.2 48.0 1219.2	0.3	117,698 lb 123,794 lb	58.8 tons 61.9 tons	1,395 9.62 1.99% 1.468 10.12 2.10%		158.0 1.09 0.23%	0.02	Yes 0.00	Yes
straight straight		5100+10 155+433		221.0 67.4	48.0 1219.2	0.3	129,891 lb	64.9 tons	1,540 10.62 2.20%	0 0.00 0.00%	214.8 1.48 0.31%	0.03	Yes 0.00	Yes
straight		5101+74 155+503	586.6 178.8	203.6 62.1	48.0 1219.2	0.3	135,988 lb	68.9 tons	1,612 11.11 2.30%		271.6 1.87 0.39%	0.03	Yes 0.00 Yes 0.01	Yes Yes
straight		5102+56 155+528 5103+38 155+553		186.2 56.8 168.8 51.4	48.0 1219.2	0.3	142,085 lb 148,182 lb	71.0 lons 74.1 lons	1,584 11.61 2.41% 1,757 12.11 2.51%	0 0.00 0.00%	328.4 2.26 0.47% 385.2 2.66 0.55%	0.03	Yes 0.01 Yes 0.01	Yes
straight straight	-	5103+38 155+553 5104+20 155+578	754.1 229.9 837.9 255.4	151.3 46.1	48.0 1219.2 48.0 1219.2	0.3	154,279 lb	77.1 lons	1,829 12.61 2.61%	0 0.00 0.00%	442.1 3.05 0.63%	0.03	Yes 0.01	Yes
straight		5105+02 155+603	921.7 280.9	133.9 40.8	48.0 1219.2	0.3	160,376 lb	80.2 tons	1.901 13.11 2.72%	0 0.00 9.00%	498.9 3.44 0.71%	0.03	Yes 0.01 Yes 0.01	Yes
straight	vertical	5105+84 155+628	1,005.5 306.5 1,052.6 320.9	116.5 35.5 107.0 32.6	48.0 1219.2 48.0 1219.2	0.3	166,473 lb	83.2 tons 106.1 tons	1,973 13.61 2.82% 2.516 17.34 3.59%	0 0.00 0.00% 12.167 83.89 17.38%	555.7 3.83 0.79% 586.7 4.04 0.84%	0.04	Yes 0.01 Yes 0.09	Yes
curve	vertical	5106+76 155+656	1,099.8 335.2	98.1 29.9	48.0 1219.2	0.3	212,205 lb 213,342 lb	106.7 tons	2,529 17.44 3.61%	12,167 83.89 17.38%	615.6 4.24 0.88%	0.32	Yes 0.09	Yes
curve	vertical	5106+76 155+656 5107+22 155+670	1,146.9 349.6	89.8 27.4	48.0 1219.2	0.3	195,569 lb	97.8 tons	2,318 15.98 3.31% 2,206 15.21 3.15%	12,167 83.89 17.38% 12,167 83.89 17.38%	642.7 4.43 6.92% 667.7 4.60 0.95%	0.31	Yes 0.09 Yes 0.09	Yes
curve	vertical vertical	5107+22 155+684 5108+15 155+698	1,194.0 353.9	82.2 25.0 75.1 22.9	48.0 1219.2 48.0 1219.2		186,069 lb	93.0 tons 90.0 tons	2,133 14.71 3.05%			0.31	Yes 0.09	Yes
curve	vertical	5108+62 155+713 5109+09 155+727	1,288.3 392.7	68.6 20.9	48.0 1219.2 48.0 1219.2	0.3	175,470 lb	87.7 tons	2.080 14.34 2.97%	12,167 83.89 17,38% 12,167 83.89 17,38% 12,167 83.89 17,38%	711.8 4.91 1.02%	0.31	Yes 0.09	Yes
curve	vertical	5109+09 155+727	1,335.4 407.0	62.8 19.1	48.0 1219.2	0.3	174,847 Ib	87.4 tons 89.9 tons	2,073 14.29 2.96%	12,167 83.89 17,38%	730.9 5.04 1.04%	0.31	Yes 0.09 Yes 0.09	Yes Yes
curve	vertical vertical	5109+56 155+741 5110+03 155+755	1,382.5 421.4	57.6 17.5 52.9 16.1	48.0 1219.2 48.0 1219.2	0.3	179,893 lb 184,574 lb	92.3 lons	2,133 14.70 3.05% 2,188 15.09 3.13%	12,167 83.89 17,38% 12,167 83.89 17,38%	763.0 5.26 1.09%	0.31	Yes 0.09	Yes
curve	vertical	5110+50 155+770	1,476.8 450.1	48.9 14.9	48.0 1219.2	0.3	189,005 lb	94.5 tons	2,241 15.45 3.20%	12,167 83.89 17.38% 12,167 83.89 17.38%	776.0 5.35 1.11%	0.31	Yes 0.09 Yes 0.09	Yes
curve	vertical	5110+97 155+784	1,523.9 464.5	45.5 13.9 42.8 13.0	48.0 1219.2		193,260 lb	96.6 tons 98.7 tons	2,291 15.80 3.27% 2,340 16.13 3.34%	12,167 83.89 17.38%	796.1 5.49 1.12%	0.31	Yes 0.10	Yes
curve	vertical vertical	5111+44 155+798 5111+91 155+813	1,618.1 493.2	42.8 13.0 40.6 12.4	48.0 1219.2 48.0 1219.2	0.3	197,387 lb 201,421 lb	100.7 tons	2,388 16.45 3.41%	12,167 83.89 17.38% 12,167 83.89 17.38%	796.1 5.49 1.14% 803.2 5.54 1.15%	0.31	Yes 0.10	Yes
curve	vertical	5112+38 155+827 5112+85 155+842	1,665.3 507.6	301 119	48.0 1219.2		205,385 lb	102.7 tons	2.435 16.79 3.48%	12,167 83.89 17.38% 12,167 83.89 17.38%	808.2 5.57 1.15% 811.2 5.59 1.16%	0.32	Yes 0.10 Yes 0.10	Yes
curve	vertical vertical	5112+85 155+842 5113+32 155+856	1,712.4 521.9	38.1 11.6 37.8 11.5	48.0 1219.2 48.0 1219.2	0.3	209,299 lb	104.6 tons 106.6 tons	2,481 17.11 3.54% 2,527 17.42 3.61%	12,167 83.89 17.38% 12,167 83.89 17.38%	811.2 5.59 1.16% 812.2 5.60 1.16%	0.32	Yes 0.10	Yes
straight	Yellical	5113+66 155+866	1,793.5 546.7	37.8 11.5	48.0 1219.2	0.3	216,470 lb	108.2 tons	2,566 17.69 3.67%	0 0.00 0.00%	812.2 5.60 1.16%	0.05	Yes 0.02	Yes
straight		5114+00 155+877 5114+34 155+887	1.827.5 557.0	37.8 11.5	48.0 1219.2	0.3	219,765 lb	109.9 tons 111.5 tons	2.605 17.96 3.72%	0 000 0.00%	812.2 5.60 1.16%	0.05	Yes 0.02 Yes 0.02	Yes Yes
straight straight	-	5114+34 155+887 5114+68 155+897		37.8 11.5 37.8 11.5	48.0 1219.2 48.0 1219.2		223.059 lb 226.353 lb	111.5 lons 113.2 lons	2,644 18.23 3.78% 2,683 18.50 3.83%	0 0.00 0.00%	812.2 5.60 1.16% 812.2 5.60 1.16%	0.05	Yes 0.02	Yes
curve	vertical	5115+41 155+920	1.968.8 600.1	38.6 11.8	48.0 1219.2	0.3	256,473 lb 258,117 lb	128.2 tons	3,040 20.96 4.34% 3,060 21.10 4.37%	12,167 83.89 17,38%	809.8 5.58 1.16%	0.33	Yes 0.10	Yes
curve	vertical	5116+15 155+942	2,042.1 622.4	40.8 12.4 44.6 13.6	48.0 1219.2 48.0 1219.2	0.3	258,117 lb	129.1 tons 123.8 tons	3,060 21.10 4.37% 2,936 20.24 4.19%		802.5 5.53 1.15% 790.3 5.45 1.13%	0.33 .	Yes 0.10	Yes
curve	vertical vertical	5116+88 155+964 5117+61 155+987	2,115.4 644.8	49.6 15.2	48.0 1219.2 48.0 1219.2	0.3	242 700 lb	121.4 tons	2,877 19.84 4.11%	12,167 83,89 17,38%	773.3 5.33 1.10%	0.32	Yes 0.10	Yes
curve	vertical	5118+34 156+009	2,262.0 689.5	56.5 17.2	48.0 1219.2	0.3	245,255 lb 253,717 lb	122.6 tons	2.907 20.05 4.15%	12,167 83.89 17.38% 12,167 83.89 17.38%	751.4 5.18 1.07% 724.7 5.00 1.04%	0.32	Yes 0.10 Yes 0.10	Yes Yes
curve	vertical vertical	5119+07 156+031 5119+79 156+053	2,335.3 711.8 2,408.6 734.2	64.7 19.7 74.3 22.7	48.0 1219.2 48.0 1219.2		253,717 lb 261,596 lb	126.9 tons 130.8 tons	3,006 20.74 4.30% 3,101 21.38 4.43%	12,167 83.89 17.38% 12,167 83.89 17.38%	693.2 4.78 0.99%	0.33	Yes 0.10	Yes
curve	vertical	5120+52 156+075	2 481 9 756.5	85.5 26.1	48.0 1219.2	0.3	269,117 lb	134.6 tons	3.190 22.00 4.56%	12,167 83.89 17.38% 12,167 83.89 17.38%	656.8 4.53 0.94%	0.33	Yes 0.10	Yes
curve	vertical	5121+24 156+097	2,555.2 778.8	98.1 29.9	48.0 1219.2	0.3	269,117 lb 276,408 lb	138.2 lons	3,277 22.59 4.68%	12,167 83.89 17.38% 12,167 83.89 17.38%	615.6 4.24 0.88% 569.7 3.93 0.81%	0.33	Yes 0.10 Yes 0.10	Yes Yes
curve	vertical vertical	5121+96 156+119 5122+68 156+141	2,628.5 801.2	112.2 34.2 127.8 38.9	48.0 1219.2 48.0 1219.2	0.3	283,544 lb 290,579 lb	141.8 tons 145.3 tons	3,361 23.18 4.80% 3,445 23.75 4.92%	12,167 83.89 17.38% 12,167 83.89 17.38% 12,167 83.89 17.38%	519.0 3.58 0.74%	0.33	Yes 0.10	Yes
curve	vertical	5123+39 156+163	2,775.2 845.9	144.8 44.1	48.0 1219.2	0.3	297,547 lb 302,019 lb	148.8 tons	3.527 24.32 5.04%	12,167 83.89 17,38%	463.5 3.20 0.66%	0.34	Yes 0.09 Yes 0.01	Yes
straight		5123+75 156+174	2 811.9 857.1	153.7 46.8	48.0 1219.2 48.0 1219.2	0.3	302,019 lb 306,490 lb	151.0 tons 153.2 tons	3,580 24.69 5.11% 3,633 25.05 5.19%	0 0.00 0.00%	434.5 3.00 0.62% 405.6 2.80 0.58%	0.05	Yes 0.01	Yes Yes
straight straight		5124+10 156+185 5124+46 156+195	2,848.6 066.3	1714 522	48.0 1219.2 48.0 1219.2	0.3	310.962 lb	155.5 tons	3,686 25.42 5.27%	0 0.00 0.00%	376.6 2.60 0.54%	0.07	Yes 0.01	Yes
straight		5124+81 156+206	2,922.0 890.6	180.3 55.0	48.0 1219.2	0.3	315,433 lb	157.7 tons	3,739 25.78 5.34%	0 0.00 0.00%	347.6 2.40 0.50%	0.07	Yes 0.01 Yes 0.01	Yes
straight		5125+17 156+217	2,958.7 901.8	189.2 57.7 198.1 60.4	48.0 1219.2 48.0 1219.2	0.3	319,904 lb 324,376 lb	160.0 tons 162.2 tons	3,792 26.15 5.42%	0 0.00 0.00%	318.7 2.20 0.46% 289.7 2.00 0.41%	0.07	Yes 0.01	Yes Yes
straight		5125+53 156+228 5125+88 156+239	3,032.2 924.2	207.0 63.1	48.0 1219.2	0.3	328,847 lb	164.4 tons	3,845 26.51 5.49% 3,898 26.88 5.57%	0 0.00 0.00%	260.7 1.80 0.37%	0.07	Yes 0.01	Yeş Yes
raight		5126+24 156+250	3,068.9 935.4	215.8 65.8		0.3	333,319 lb	166.7 tons	3,951 27.24 5.64% 4,004 27.61 5.72%	0 0.00 0.00%	231.8 1.60 0.33% 202.8 1.40 0.29%	0.07	Yes 0.01 Yes 0.01	Yes Yes
aight	-	5126+60 156+261 5126+95 156+271	3,105.6 946.6 3,142.3 957.8	233.6 71.2	48.0 1219.2 48.0 1219.2	0.3	337,790 lb 342,251 lb	168.9 tons 171.1 tons	4,057 27.97 5.80%	0 0.00 0.00%	173.8 1.20 0.25%	0.07	Yes 0.01	Yes
straight		5127+31 156+282	3,179.1 969.0	242.5 73.9	48.0 1219.2	0.3	346,733 lb	173.4 tons	4.110 28.34 5.87%	0 0.00 0.00%	144.8 1.00 0.21%	0.07	Yes 0.01	Yes
straight straight	-	5127+66 156+293 5128+02 156+304	3,215.8 980.2	251.4 76.6 260.2 79.3	48.0 1219.2 48.0 1219.2	0.3	351,204 lb 355,676 lb	175.6 tons 177.8 tons	4,163 28.71 5.95% 4,216 29.07 6.02%	0 0.00 0.00%	115.9 0.80 0.17% 86.9 0.60 0.12%		Yes 0.01	Yes Yes
straight		5128+38 156+315 5128+73 156+326	3,289.2 1,002.6	269.1 82.0	48.0 1219.2	0.3	360.147 lb	180.1 tons	4.259 29.44 6.10%	0 0.00 0.00%	86.9 0.60 0.12% 57.9 0.40 0.08%	0.08	Yes 0.01	Yes
straight HDD Rig Location		5128+73 156+326	3,325.9 1,013.8	278.0 84.7	48.0 1219.2	0.3	364,619 lb	182.3 tons	4,322 29.80 6.17%	0 0.00 0.00%	29.0 0.20 0.04% 0.0 0.00 0.00%	0.08	Yes 0.01 Yes 0.01	Yes
IDD Rig Location	1	5129+09 156+337	3,362.7 1,024.9	286.9 87.4	48.0 1219.2	0.3	369,090 lb	184.5 tons	4,375 30.17 6.25%	NOTE: Hoop stress ta	ken as an empty pipe for no buoya	ncy control and	with water with buoyancy	control
Ground Ele	vation at Pipe Entry	325.56 feet 99.23 metres											d Tensile and Combine	d Tensile, Bend
		99.23 metres 286.90 feet	7				TOTAL PL	JLL LOADS	Tensile (Axial) Stress psi MPa % SMYS	Bending Stress psi MPa % SMY3	Hoop Stress S psi MPa % SMYS	Combined Bendin	ng Factor Combine	d Tensile, Bendi Hoop Factor
Ground E	levation at Pipe Exit	87.45 metres	4			Maximum Values	369,090 lb	184.5 tons	4,375 30.2 6.25%	12,167 83.9 17.38%	812 5.6 1.16%	(0.34	0.10
ut Pipe Propertie	s		_											
	Pipe Outer Diameter	36 in												
		914.4 mm 0.762 in	4											
P	Pipe Wall Thickness	19.3548 mm	-											
	DR	47.2												
	Pipe Weight (in air)	287.04 lbs/ft 428.06 kg/m	-											
Wai	oht of Water in pipe	404.5 lbs/ft	_											
		603.26 kg/m 110.0 lbs/ft												
Net Buo	yant Weight of pipe	110.0 les/ft 163.99 kg/m	-											
Young's N	Acdulus of Elasticity	2.92E+07 psi 201327 MPa	1											
, congo n		201327 MPa 70,000 psi	-											
	Yield Strength	482.6 MPa	-											
	Poisson Ratio	0.3 6.625 in												
	Drill Pipe Diameter	6.625 in 168.275 mm	-											
Main	Radius of Curvature	2,500 ft												
MINIMUM I	sadius oi Curvature	762 m												
Ultir	mate Safe Pull Load	3,542,953 lb 15,760 kN	-											
		369,090 lb	-											
Maximum C	Calculated Pull Load	1,642 kN												
	Factor of Safety		4											
S aximum Calculata	tart-Up Load Factor d Start-Up Pipe Pul	738,180 lb	-											
	Load	3,284 kN	1											
	Factor of Safety	4.8	_											
I and Mud Prope	rtios													
	Mud Weight	11 ppg of drill 1.319 Specific G	I fluid and solids (typics Srawby	ily 9.5 to 11 lb/gal)	J									
Friction C	ceff. (GS or rollers)	0.1 rollers typi	ically 0.10 to 0.30 (along	g ground surface is higher	range)									
	Yield Poin			nce from previous installat	ions)									
	Plastic Viscosity	93.366 dyne/cm ²	on HDD experience for	om previous installations)										
		EOO GRAA/hmir	ically 200 to 300 gpm for	r soil or 400 to 800 gpm b	edrock)									
Drilling	g mud pumping rate													

				H	IDD Insta	Ilation S	Stress Ar	nalysis				
Tens	silo (Axial)	Stress	Bending Stress			н	oop Stress		Combined Tensile and Bending Factor	CombinedTe nsile and Bending <1.0	Combined Tensile, Bending and Hoop Factor	Combined Tensile, Bending and Hoop <1.0
psi	MPa	% SMYS	psl	MPa	% SMYS	psi	MPa	% SMYS				
1,178	8.12	1.68%	0	0.00	0.00%	0.0	0.00	0.00%	0.02	Yes	0.00	Yes
1,226	8.46	1.75%	0	0.00	0.00%	56.8	0.39	0.08%	0.02	Yes	0.00	Yes
1,275	8.79	1.82%	0	0.00	0.00%	113.6	0.78	0.16%	0.02	Yes	0.00	Yes
1,323	9.12	1.89%	0	0.00	0.00%	170.4	1.18	0.24%	0.02	Yes	0.00	Yes
1,395	9.62	1.99%	0	0.00	0.00%	101.2	0.70	0.14%	0.02	Yes	0.00	Yes Yes
1,468	10.12	2.10%	0	0.00	0.00%	158.0	1.09	0.23%	0.03	Yes		
1,540	10.62	2.20%	0	0.00	0.00%	214.8	1.48	0.31%	0.03	Yes	0.00	Yes Yes
1,612	11.11	2.30%	0	0.00	0.00%	271.6	1.87	0.39%	0.03	Yes Yes	0.00	Yes
1,584	11.61	2.41%	0	0.00	0.00%	328.4 385.2	2.28	0.47%	0.03	Yes	0.01	Yes
1,757	12.11	2.51% 2.61%	0	0.00	0.00%	442.1	3.05	0.63%	0.03	Yes	0.01	Yes
1,829		2.72%	0	0.00	0.00%	498.9	3.44	0.71%	0.03	Yes	0.01	Yes
1,901	13.11	2.82%	0	0.00	0.00%	555.7	3.83	0.71%	0.04	Yes	0.01	Yes
2.516	17,34	3.59%	12,167	83.89	17.38%	586.7	4.04	0.84%	0.32	Yes	0.09	Yes
2,529	17.44	3.61%	12,167	83.89	17.38%	615.6	4.24	6.88%	0.32	Yes	0.09	Yes
2,318	15.98	3.31%	12,167	63.89	17.38%	642.7	4.43	6.92%	0.31	Yes	0.09	Yes
2,206	15.21	3.15%	12,167	83.89	17,38%	667.7	4.60	0.95%	0,31	Yes	0.09	Yes
2,133	14.71	3.05%	12,167	83.89	17.38%	690.7	4.76	0.99%	0.31	Yes	0.09	Yes
2,080	14.34	2.97%	12,167	83.89	17,38%	711.8	4.91	1.02%	0.31	Yes	0.09	Yes
2,073	14.29	2.96%	12,167	83.89	17.38%	730.9	5.04	1.04%	0.31	Yes	0.09	Yes Yes
2,133	14.70	3.05%	12,167 12,167	83.89	17.38%	747.9 763.0	5.16 5.26	1.07%	0.31	Yes	0.09	Yes
2,188	15.09 15.45	3.13%	12,167	83.89 83.89	17.38%	776.0	5.35	1,11%	0.31	Yes	0.09	Yes
2.291	15.80	3.27%	12,167	83.89	17.38%	767.1	5.43	1.12%	0.31	Yes	0.09	Yes
2,340	16,13	3,34%	12,167	83.89	17,38%	796.1	5.49	1.14%	0,31	Yes	0.10	Yes
2,388	16.45	3.41%	12,167	83.89	17.38%	803.2	5.54	1.15%	0.31	Yes	0.10	Yes
2,435	16.79	3,48%	12,167	83.89	17.38%	808.2	5.57	1.15%	0.32	Yes	0.10	Yes
2,481	17.11	3.54%	12,167	83.89	17.38%	811.2	5.59	1.16%	11.32	Yes	0.10	Yes
2,527	17.42	3.61%	12,167	83.89	17.38%	812.2	5.60	1.16%	0.32	Yes	0.10	Yes
2,566	17.69	3.67%	0	0.00	0.00%	812.2	5.60	1.16%	0.05	Yes	0.02	Yes
2,605	17.96	3.72%	0	0.00	0.00%	812.2 812.2	5.60	1.16%	0.05	Yes	0.02	Yes
2,644	18.23	3.78%	0	0.00	0.00%	812.2	5.60	1.16%	0.05	Yes	0.02	Yes
2,683 3,040	18.50 20.96	3.83%	12,167	83.89	17,38%	809.8	5.58	1.16%	0.33	Yes	0.10	Yes
3,040	21.10	4.37%	12,167	83.89	17.38%	802.5	5.53	1.15%	0.33	Yes	0.10	Yes
2,936	20.24	4 19%	12,167	83.89	17.38%	790.3	5.45	1.13%	0.32	Yes	0.10	Yes
2,877	19.84	4.11%	12,167	83.89	17.38%	773.3	5.33	1.10%	0.32	Yes	0.10	Yes
2,907	20.05	4.15%	12,167	83.89	17.38%	751.4	5.18	1.07%	0.32	Yes	0.10	Yes
3,000	20.74	4.30%	12,167	83.89	17.38%	724.7	5.00	1.04%	0.33	Yes	0.10	Yes
3,101	21.38	4.43%	12,167	83.89	17.38%	693.2	4.78	0.99%	0.33	Yes	0.10	Yes
3,190	22.00	4.56%	12,167	83.89	17.38%	656.8 615.6	4.53	0.94%	0.33	Yes Yes	0.10	Yes
3,277	22.59	4.68%	12,167	83.89 83.89	17.38%	569.7	3.93	0.88%	0.33	Yes	0.10	Yes
3,361	23.75	4.92%	12,167	83.89	17.38%	519.0	3.58	0.74%	0.33	Yes	0.10	Yes
3,527	24.32	5.04%	12,167	83.89	17.38%	463.5	3.20	0.66%	0.34	Yes	0.09	Yes
3,580	24.69	5.11%	0	0.00	0.00%	434.5	3.00	0.62%	0.06	Yes	0.01	Yes
3,633	25.05	5.19%	0	0.00	0.00%	405.6	2.80	0.58%	0.06	Yes	0.01	Yes
3,686	25.42	5.27%	0	0.00	0.00%	376.6	2.60	0.54%	0.07	Yes	0.01	Yes
3,739	25.78	5.34%	0	0.00	0.00%	347.6	2.40	0.50%	0.07	Yes	0.01	Yes
3,792	26.15	5.42%	0	0.00	0.00%	318.7	2.20	0.46%	0.07	Yes	0.01	Yes
3,845	26.51	5.49%	0	0.00	0.00%	289.7 260.7	1.80	0.41%	0.07	Yes	0.01	Yes
3,898	26.88	5.57% 5.64%	0	0.00	0.00%	231.8	1.60	0.37%	0.07	Yes	0.01	Yes
3,951 4,004	27.51	5.72%	0	0.00	0.00%	202.8	1.40	0.29%	0.07	Yes	0.01	Yes
4,004	27.97	5.80%	0	0.00	0.00%	173.8	1.20	0.25%	0.07	Yes	0.01	Yes
4,110	28.34	5.87%	0	0.00	0.00%	144.8	1.00	0.21%	0.07	Yes	0.01	Yes
4,163	28.71	5.95%	0	0.00	0.00%	115.9	0.80	0.17%	0.07	Yes	0.01	Yes
4,216	29.07	6.02%	0	0.00	0.00%	86.9	0.60	0.12%	0.08	Yes	0.01	Yes
4,269	29.44	6.10%	0	0.00	0.00%	57.9	0.40	0.08%	0.08	Yes	0.01	Yes
4,322	29.80	6.17%	0	0.00	0.00%	29.0	0.20	0.04%	0.08	Yes	0.01	Yes
4,375	30.17	6.25%	0	0.00	0.00%	0.0	0.00	0.00%	0.08 cv control and	Yes		Yes

. po rroigin (in any	428.06	
Weight of Water in pipe		5 lbs/ft
	603.26	
Net Buoyant Weight of pipe		D lbs/ft
The Budgank Traight of pipe	163.99	
Young's Medulus of Elasticity	2.92E+07	
Today's Incodics of Elescoly	201327	
Yield Strength	70,000	
		5 MPa
Poisson Ratio	0.3	
Drill Pipe Diameter	6.625	
Drill Pipe Diameter	168.275	
Minimum Radius of Curvature	2,500	D ft
Minimum Radius of Curvature	762	2 m
	3.542.953	3lb
Ultimate Safe Pull Load	15,760	
	369,090	
Maximum Calculated Pull Load	1,642	
Factor of Safety	9.6	
Start-Up Load Factor	2	
Maximum Calculated Start-Up Pipe Pull	738,180	
Load	3,284	
Factor of Safety	4.8	B
Soil and Mud Properties		
Mud Weight		1 ppg of drill fluid and solids (typically 9.5 to 11 lb/gal)
		9 Specific Gravity
Friction Coeff. (GS or rollers)		1 rollers typically 0.10 to 0.30 (along ground surface is higher range)
Yield Point	19.5	5 lb/100ft2 (Based on HDD experience from previous installations)
Tield Point	93.366	6 dyne/cm²
Plastic Viscosity	13	3 cP (Based on HDD experience from previous installations)
The state of the s		O GPM (typically 200 to 300 gpm for soil or 400 to 800 gpm bedrock)
Drilling mud pumping rate		1 m³/min
		9 GPM (equivalent mud rate accounting for sturry displaced by product pipe installation)
Drilling mud pumping rate		3 m²/min
		Olfeet/min (Based on HDD experience)
Pipe Pullback Rate		5 m/min

M	
MOTT	M
MACDO	NALD

Horizontal Directional Drilling Calculation of Pull Loads and Stresses during Pipe Installation

Calculated by:	M. Lockwood	
Checked by:	G. Duywestyn	
Date:	4/19/2019	
Project No:	353754	

PROJECT: PennEast Pipeline Project - Case 5

HDD CROSSING LOCATION: Wickecheoke Creek

Reference:

Installation of Pipelines by Horizontal Directional Drilling, an Engineering Guide, PRCI Publication 2015
 Pipeline Design for Installation by Horizontal Directional Drilling, Manual of Practice, ASCE MREP 108, 2005

		HDD Installation Load Analysis								HDD Installation Stress Analysis															
Segment Type	Type of Curve	Bore Sta		7102500	d Length	2000	levation	158457	Nameter	Geotechnical Friction Factor	TOTAL PUI	L LOADS	Ten	silo (Axial		Ве	ending Stres	•		Hoop Stres	•	Combined Tensile and Bending Factor	CombinedTe nsile and Bending <1.0	Combined Tensile, Bending and Hoop Factor	
Pipe Entry Location		feet 5096+00	metres 155+328	feet 0.0	metres 0.0	feet 325.6	metres 99.2	inch	mm	-	99.394 lb	49.7 lons	psi	MPa B 12	% SMYS 1.68%	psi 0	MPa	% SMYS	psi	MPa	%SMYS		2 3	53.00	
straight	1	5096+82	155+353	83.8	25.5	308.1	93.9	48.0	1219.2	0.3	117,270 lb	49.7 tons 58.6 tons	1,178	9.58	1,99%	0	0.00	0.00%	0.0 256.5	1.77	0.00%	0.02	Yes	0.00	Yes Yes
straight		5097+64	155+378	167.6	51.1	290.7	88.6	48.0	1219.2	0.3	135,147 lb	67.6 tons	1,602	11,05	2,29%	0	0.00	0.00%	513.0	3.54	0.73%	0.02	Yes	0.00	Yes
straight		5098+45	155+403	251.4	76.6	273.3	83.3	48.0	1219.2	0.3	159,430 lb	79.7 lons	1,890	13.03	2.70%	0	0.00	0.00%	200.3	1.38	0.29%	0.03	Yes	0.01	Yes
straight		5099+28	155+428	335.2	102.2	255.9	78.0	48.0	1219.2	0.3	183,714 lb	91.9 tons	2,178	15.02	3.11%	0	0.00	0.00%	456.B	3.15	0.65%	0.04	Yes	0.02	Yes
straight straight		5100+10 5100+92	155+453	419.0 502.8	127.7	238.5 221.0	72.7 67.4	48.0 48.0	1219.2 1219.2	0.3	207,998 lb 232,282 lb	104.0 tons	2,466	17.00	3.52%	0	0.00	0.00%	713.3 969.8	4.92 6.69	1.02%	0.04	Yes	0.03	Yes
straight		5101+74	155+503	586.6	178.8	203.6	62.1	48.0	1219.2	0.3	256,565 lb	128.3 tons	3,041	20.97	4.34%	0	0.00	0.00%	1,226.3	8.46	1.39%	0.05	Yes	0.05	Yes
straight		5102+56	155+528	670.3	204.3	196.2	56.8	48.0	1219.2	0.3	280,849 lb	140.4 tons	3,329	22.95	4.76%	0	0.00	0.00%	1,482.9	10.22	2.12%	0.05	Yes	0.08	Yes
straight		5103+38	155+553	754.1	229.9	168.8	51.4	48.0	1219.2		305,133 lb	152.6 tons	3,617	24.94	5.17%	0	0.00	0.00%	1,739.4	11.99	2.48%	0.06	Yes	0.10	Yes
straight	-	5104+20	155+578	837.9	255.4	151.3	45.1	48.0	1219.2	0.3	329,417 lb	164.7 tons	3,905	26.92	5.58%	0	0.00	0.00%	1,995.9		2.85%	0.07	Yes	0.12	Yes
straight straight	-	5105+02 5105+84	155+603 155+628	921.7	280.9 306.5	133.9 116.5	40.8 35.5	48.0 48.0	1219.2	0.3	353,700 lb 377,984 lb	176.9 tons 189.0 tons	4,193 4,481	26.91 30.89	5.99% 6.40%	0	0.00	0.00%	2,252.4	15.53	3.22%	0.07	Yes	0.15	Yes
curve	vertical	5108+30	155+642			107.0	32.6	48.0	1219.2	0.3	424,632 lb	212,3 tons	5,034	34,71	7,19%	12,167	83.89	17.38%	2,509.0	17.30	3.58%	0.08	Yes	0.18	Yes Yos
curve	vertical	5106+76	155+656	1,099.8	335.2	98.1	29.9	48.0	1219.2	0.3	421,377 lb	210.7 tons	4,995	34.44	7.14%	12,167	83.89	17.38%	2,779.7	19.17	3.97%	0.36	Yes	0.34	Yes
curve	vertical	5107+22 5107+69	155+670 155+684	1,146.9	349.6 363.9	89.8	27.4 25.0	48.0 48.0	1219.2		445,680 lb 449,063 lb	222.8 tons	5,283	36.43	7.55%	12,167	83.89	17.38%	2,901.7	20.01	4.15%	0.37	Yes	0.36	Yes
curve	vertical vertical	5107+69	155+698	1,194.0	363.9	82.2 75.1	25.0	48.0	1219.2		449,053 lb 467,773 lb	224.5 tons 233.9 tons	5,323 5,545	36.70 38.23	7.60% 7.92%	12,167	83.89 83.89		3,014.7	20.79	4.45%	0.37	Yes	0.38	Yes Yes
curve	vertical	5108+62	155+713		392.7	68.6	20.9	48.0	1219.2	0.3	476,731 lb	238.4 tons	5,651	38.97	8.07%	12,167	83.89		3,213.8		4.40%	0.37	Yes	0.39	Yes
curve	vertical	5109+09		1,335.4		62.8	19.1	48.0	1219.2	0.3	493,699 lb	246.8 tons	5,853	40.35	8.36%	12,167	83.89		3,299.9	22.75	4.71%	0.38	Yes	0.42	Yes
curve	vertical	5109+56 5110+03		1,382 5	421.4 435.8	57.6 52.9	17.5	48.0 48.0	1219.2		505,953 lb 522,273 lb	253.0 tons 261.1 tons		41.35	8.57%	12,167	83.89		3,376.9		4.82%	0.38	Yes	0.44	Yes
curve	vertical	5110+50	155+770	1,429.0	450.1	48.9	14.9	48.0	1219.2	0.3	536,238 lb	268.1 ions		42,69	9.08%	12,167	83.89 83.89	17.38%	3,444.9	23.75 24.16	4.92% 5.01%	0.38	Yes Yes	0.45 0.46	Yes Yes
curve	vertical	5110+97	155+784	1,523.9	464.5	45.5	13.9	48.0	1219.2	0.3	552,204 lb	276.1 tons	6,546	45.13	9.35%	12,167	83.89	17.38%	3,553.8		5.08%	0.39	Yes	0.47	Yes
CUIVE	vertical	5111+44	155+798	1,571.0	478.8	42.8	13.0	48.0	1219.2	0.3	566,941 lb	283.5 lons	8,721		9.60%	12,167	83.89	17.38%	3,594.7		5.14%	0.39	Yes	0.48	Yes
curve	vertical vertical	5111+91 5112+38	155+813 155+827	1,618.1	493.2 507.6	40.6 39.1	12.4	48.0	1219.2	0.3	613,022 lb 628,260 lb	306.5 tons 314.1 lons	7,267	50.10	10.38%	12,167	83.89	17.38%	3,626.4			0.40	Yes	0.50	Yes
curve	vertical	5112+85	155+842	1,712.4	521.9	38.1	11.6	48.0	1219.2	0.3	643,350 lb	321.7 tons	7.627	52.58	10.90%	12,167	83.89 83.59	17.38%	3,662.8		5.21%	0.41	Yes	0.50	Yes
curve	vertical	5113+32	155+856	1,759.5	536.3	37.8	11.5	48.0	1219.2	0.3	658,290 lb	329.1 tons	7,804	53.80	11.15%	12,167	83.89	17.38%	3,667.3		5.24%	0.41	Yes	0.51	Yes
straight		5113+66	155+866	1,793.5	546.7	37.8	11.5	48.0	1219.2	0.3	665,823 lb	332.9 tont	7,893	54,42	11.28%	0	0.00	0.00%	3,667.3		5.24%	0.14	Yes	0.35	Yes
straight straight		5114+00 5114+34	155+877 155+887	1,827.5	557.0 567.4	37.8 37.8	11.5	49.0 48.0	1219.2	0.3	673,356 lb	336,7 tons 340,4 tons	7,982 8,072	55.04 55.65	11.40% 11.53%	0	0.00	0.00%	3,667.3		5.24%	0.14	Yes	0.35	Yes
straight		5114+68	155+897	1,895.5	577.8	37.8	11.5	48.0	1219.2	0.3	688,422 lb	344.2 tons	8,161	56.27	11.66%	0	0.00	0.00%	3,667.3		5.24%	0.14	Yes	0.35	Yes
curve	vertical	5115+41	155+920	1,968.8	600.1	38.6	11.8	48.0	1219.2	0.3	730,279 lb	365.1 tons	8,657	59.69	12.37%	12,167	83.89	17.38%	3,656.3		5.22%	0.43	Yes	0.53	Yes
curve	vertical	5116+15	155+942	2,042.1	622.4	40.8	12.4	48.0	1219.2	0.3	731,697 lb	365.8 tons	8,674	59.80	12,39%	12,167	83.89	17.38%	3,623.4		5.18%	0.43	Yes	0,52	Yes
CUIVA	vertical vertical	5116+88 5117+61	155+964 155+987	2,115.4	644.8 867.1	44.6	13.6 15.2	48.0 48.0	1219.2	0.3	760,486 lb	385.6 tons	9,515	62.16	12,88%	12,167	83.89 83.89	17.38%	3,568.4		5.10%	0.43	Yes	0,52	Yes
curve	vertical	5118+34	156+009	2,262.0	689.5	56.5	17.2	48.0	1219.2	0.3	796,347 lb	398.2 tons	9,143	65.09	13.49%	12,167	83.89	17.38%	3,392.8		4.99%	0.44	Yes	0.51	Yes Yes
curve	vertical	5119+07	156+031	2,335.3	711.8	64.7	19.7	48.0	1219.2	0.3	812,521 lb	406.3 tons	9,632	66.41	13.76%	12,167	23.89	17.38%	3,272.2		4.67%	0.44	Yes	0.48	Yes
curve	vertical vertical	5119+79 5120+52	156+053 156+075	2,408.6	734.2 756.5	74.3 85.5	22.7	48.0 48.0	1219.2	0.3	835,753 lb 854,368 lb	417.9 tons	9,907	69.83	14.15%	12,167	83.89	17.38%	3,129.8		4.47%	0.45	Yes	0.47	Yes
curve	vertical	5121+24	156+075	2,451.9	778.8	98.1	29.9	48.0	1219.2	0.3	916,890 lb	427.2 lons 458.4 lons	10,128		15,53%	12,167	83.89 83.89	17.38%	2,965.6		4.24% 3.97%	0.45	Yes	0.45	Yes Yes
curve	vertical	5121+96	156+119	2,628.5	801.2	112.2	34.2	48.0	1219.2	0.3	937,163 lb	468.6 tons	11,110	76.60	15,87%	12,167	83.89	17,38%	2.572.2		3.67%	0.47	Yes	0.41	Yes
curve	vertical	5122+68	156+141	2,701.9	823.5	127.8	38.9	48.0	1219.2	0.3	957,026 lb	478.5 tons	11,345	78.22	16.21%	12,167	83.89	17.38%	2,343.2		3.35%	0.47	Yes	0.39	Yes
curve straight	vertical	5123+39 5123+75	156+163	2,775.2	845.9 857.1	144.8	44.1	48.0 48.0	1219.2	0.3	976,475 lb 981,325 lb	488.2 tons 490.7 tons	11,576		16.54%	12,167	0.00	17.38%	2,092.8		2.99%	0.48	Yes	0.36	Yes
straight		5124+10	158+185	2,848.6	868.3	162.5	49.5	48.0	1219.2	0.3	986,175 lb	493.1 tons	11,633	80.60	16.70%	0	0.00	0.00%	1,831.2		2.80%	0.21	Yes Yes	0.18	Yes Yes
straight		5124+46	156+195	2,885.3	879.5	171.4	52.2	48.0	1219.2	0.3	991,025 lb	495.5 lons	11,748	81.00	16.78%	0	0.00	0.00%	1,700.4	11.72	2.43%	0.21	Yes	0,16	Yes
straight		5124+81	156+206	2,922.0		180.3	55.0 57.7	48.0	1219.2	0.3	995,875 lb	497.9 lans	11,806		16.87%	0	0.00	0.00%	1,569.6	10.82	2.24%	0.21	Yes	0.15	Yes
straight straight		5125+17 5125+53	155+217	2,958.7	901.8	189.2	60.4	48.0 48.0	1219.2	0.3	1,000,725 lb	500.4 tons 502.8 tons	11,863	81.79	16.95%	0	0.00	0.00%	1,438.8		1.87%	0.21	Yes Yes	0.14	Yes
straight		5125+88	156+239	3,032,2	924.2	207.0	63.1	48.0	1219,2	0.3	1,010,425 lb	505.2 lons		82.59	17,11%	0	0.00	0.00%	1,177.2		1.68%	0.21	Yes	0.13	Tes
straight		5126+24	156+250	3,068.9		215.8	65.8	48.0	1219.2	0.3	1,015,275 lb	507.6 lons	12,036	82.98	17.19%	0	0.00	0.00%	1,046.4	7.21	1.49%	0.21	Yes	0.11	
straight straight		5126+60 5126+95	156+261 156+271	3,105.6	946.6 957.8	224.7	68.5 71.2	48.0 48.0	1219.2 1219.2	0.3	1,020,125 lb	510.1 lons 512.5 lons	12,093	83.38 83.78	17.28%	0	0.00	0.00%	915.6 784.8		1.31%	0.22	Yes	0.10	4
straight	1 -	5120+95	156+282	3,179.1	969.0	242.5	73.9	48.0	1219.2	0.3	1,024,975 lb	514.9 tons	12,151	84.17	17.44%	0	0.00	0.00%	654.0		1.12%	0.22	Yes	0.09	+
straight		5127+66	156+293	3,215.8	980.2	251.4	76.6	48.0	1219.2	0.3	1,034,675 lb	517.3 lons	12,266	84.57	17.52%	0	0.00	0.00%	523.2	3.61	0.75%		Yes	0.08	Yes
straight		5128+02	156+304	3,252.5	991.4	260.2	79.3	48.0	1219.2	0.3	1,039,525 lb	519.8 tons	12,323	84.96	17.60%	0	0.00	0.00%	392.4		0.56%		Yes	0.08	Yes
straight straight		5128+38 5128+73		3,289.2	1,002.6	269.1 278.0	82.0 84.7	48.0 48.0	1219.2	0.3	1,044,375 lb	522.2 tons 524.6 tons	12,381	85.36 85.76	17.69%	0	0.00	0.00%	261.6	1.80	0.37%	0.22	Yes	0.07	Yes
HDD Rig Location		5129+09		3,362.7		286.9	87.4	48.0	1219.2	0.3	1,049,225 ID	524.6 tons	12,438	86.15	17.77%	0	0.00	0.00%	130.8	0.90	0.19%	0.22	Yes Yes	0.07	Yes
				-			-								11.00.0	-							with water with		
Ground Ele	vation at Pipe Entry	325.56 99.23	feet metres										_	nsile (Axia)	\ Ct					7/(2(910)					(0.054)
100000000000000000000000000000000000000															% SMYS		lending Stres			Hoop Stres			Tensile and	Combined To	
	evation at Pipe Exit	286.90	feet								TOTAL PU		pei	MPa		psi	MPa	% SMYS	nsi	MPa	% SMYS		ng Factor		oop Factor

| Ground Elevation at Pipe Europy | 98,23 | metres | 98,23 | metres | 1,054,675|b | 527,0|tons | 1,054

Facier of Safety 3.4

Start-Up Load Factor 2

Maximum Calculated Start-Up Pipe Pull
Load 2,376 kN

Soil and Mud Properties

Soil and Mud Properties

Mud Weight 1,190 of this field and solids (typically 9.5 to 11 higher)

Fricken Coeff, (Sc r cellers)

1,190 of this field and solids (typically 9.5 to 11 higher)

Fricken Coeff, (Sc r cellers)

1,190 of this field and solids (typically 9.5 to 11 higher)

Fricken Coeff, (Sc r cellers)

1,190 of this field and solids (typically 9.5 to 11 higher range)

1,190 of this field and solids (typically 9.5 to 11 higher range)

1,190 of this field and solids (typically 9.5 to 11 higher range)

1,190 of this field and solids (typically 9.5 to 11 higher range)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

1,190 of this field and solids (typically 9.5 to 11 higher)

Ultimate Safe Pull Load-Maximum Calculated Pull Load-

M	
мотт	M
DO	NALD

ontal Directional Drilling lation of Pull Loads and Stresses during Pipe Installation

Calculated by:	M. Lockwood	
Checked by:	G. Duyvestyn	
Date:	4/19/2019	
Project No:	353754	

PROJECT: PennEast Pipeline Project - Case 6

HDD CROSSING LOCATION: Wickecheoke Creek

Reference:

- Installation of Pipelines by Horizontal Directional Drilling, an Engineering Guide, PRCI Publication 2015
 Pipeline Design for Installation by Horizontal Directional Drilling, Manual of Practice, ASCE MREP 108, 2005

Segment Type	Type of Curve	Bore Sta			d Length		levation	Bore D	lameter	Geotechnical Friction Factor	TOTAL PUL	L LOADS
Pipe Entry Location		feet 5096+00	metres	feet	metres	feet	metres	inch	mm	1		
			155+328	0.0	0.0	325.6	99.2		-		99,394 lb	49.7 ton
straight		5096+82	155+353	83.8	25.5	308.1	93.9	48.0	1219.2	0.3	103,084 lb	51.5 ton
straight		5097+64	155+378	167.6	51.1	290.7	88.6	48.0	1219.2	0.3	106,774 lb	53.4 lon
straight straight		5098+46	155+403	251.4	76.6	273.3	83.3	48.0	1219.2	0.3	111,517 lb	55.8 tor
straight		5099+28 5100+10	155+428 155+453	335.2	102.2	255.9	78.0	48.0	1219.2	0.3	116,260 lb	58.1 tor
straight		5100+10		419.0	127.7	238.5	72.7	48.0	1219.2	0.3	121,003 lb	60.5 tor
straight		5100+92	155+478	502.8	153.2	221.0	67.4	48.0	1219.2	0.3	125,745 lb	62.9 to:
straight		5102+56	155+528	586.6	178.8	203.6	62.1	48.0	1219.2	0.3	130,488 lb	65.2 to
straight		5102+36	155+553	670.3 754.1	204.3	186.2	56.8	48.0	1219.2	0.3	135,231 lb	67.6 to
straight		5103+36	155+578	837.9	255.4	168.8	51.4	48.0	1219.2	0.3	139,974 lb	70.0 to
straight		5105+02	155+603	921.7	280.9	151.3	46.1	48.0	1219.2	0.3	144,717 lb	72.4 to:
straight		5105+B4	155+628		306.5	133.9	40.8	48.0	1219.2	0.3	149,460 lb	74.7 tor
curve	vertical	5105+84	155+642	1,005.5	320.9	116.5	35.5 32.6	48.0	1219.2	0.3	154,203 lb	77.1 los
curve	vertical	5106+76	155+656	1,099.8	335.2	98.1	29.9	48.0	1219.2	0.3	201,618 lb	100.8 los
curve	vertical	5107+22	155+670	1,146.9	349.6	89.8	27.4	48.0	1219.2	0.3	205,080 lb	102,5 to
curve	vertical	5107+69	155+634	1,194.0	363.9	82.2	25.0	48.0	1219.2	0.3	189,288 lb 181,752 lb	94.6 to
curve	vertical	5108+15	155+698	1,241,1	378.3	75.1	22.9	48.0	1219.2	0.3	181,752 lb	90.9 tor
curve	vertical	5108+62	155+713	1,288.3	392.7	68.6	20.9	48.0	1219.2	0.3	177,544 lb	88.8 tor 87.5 tor
curve	vertical	5109+09	155+727	1,335.4	407.0	62.8	19.1	48.0	1219.2	0.3	173,484 lb	86.7 to
curve	vertical	5109+56	155+741	1,382.5	421.4	57.6	17.5	48.0	1219.2	0.3	172,578 Ib	86.3 tor
curve	vertical	5110+03	155+755	1,429.6	435.8	52.9	16.1	48.0	1219.2	0.3	172,110 lb	86.1 tor
curve	vertical	5110+50	155+770	1,476.8	450.1	48.9	14.9	48.0	1219.2	0.3	171,965 lb	86.0 tor
curve	vertical	5110+97	155+784	1,523.9	464.5	45.5	13.9	48.0	1219.2	0.3	172,069 lb	86.0 tor
curve	vertical	5111+44	155+798	1,571.0	478.8	42.8	13.0	48.0	1219.2	0.3	172,372 lb	86.2 tor
curve	vertical	5111+91	155+813	1,618.1	493.2	40.6	12.4	48.0	1219.2	0.3	174.757 lb	87.4 tor
curve	vertical	5112+38	155+827	1,665.3	507.6	39.1	11.9	48.0	1219.2	0.3	177,524 lb	88.8 tor
curve	vertical	5112+85 5113+32	155+842	1,712.4	521.9	38.1	11.6	48.0	1219.2	0.3	180,230 lb	90.1 lor
straight	vertical	5113+66	155+856 155+866	1,759.5	536.3	37.8	11.5	48.0	1219.2	0.3	182,889 lb	91.4 lo
straight		5114+00	155+877		546.7	37.8	11.5	48.0	1219.2	0.3	185,239 lb	92.6 to
straight		5114+34	155+887	1,827.5	557.0 567.4	37.8 37.8	11.5	48.0	1219.2	0.3	187,590 lb	93.8 to
straight		5114+68	155+897	1,895.5	577.8	37.8	11.5	48.0 48.0	1219,2 1219,2	0.3	189,940 lb	95.0 tor
curve	vertical	5115+41	155+920	1,968.8	600.1	38.6	11.8	48.0	1219.2	0.3	192,291 lb	96.1 lor
curve	vertical	5116+15	155+942	2.042.1	622.4	40.8	12.4	48.0	1219.2	0.3	223,922 ID 228,149 Ib	112.0 to:
curve	vertical	5116+88	155+964	2,115.4	644.8	44.6	13.6	48.0	1219.2	0.3	219,644 lb	109.8 to
curve	vertical	5117+61	155+987	2,186.7	667.1	49.8	15.2	48.0	1219.2	0.3	216,549 lb	108.3 tor
curve	vertical	5118+34	156+009	2,262.0	689.5	56.5	17.2	48.0	1219.2	0.3	215,702 lb	107.9 to
curve	vertical	5119+07	156+031	2,335.3	711.8	64.7	19.7	48.0	1219.2	0.3	216,050 lb	108.0 to
curve	vertical	5119+79	156+053	2,408.6	734.2	74.3	22.7	48.0	1219.2	0.3	217 147 lb	108.6 tor
curve	vertical	5120+52	156+075	2,481.9	756.5	85.5	26.1	48.0	1219.2	0.3	218,769 lb	109.4 tor
curve	vertical vertical	5121+24	156+097	2,555.2	778.8	98.1	29.9	48.0	1219.2	0.3	222,259 lb	111.1 tor
curve	vertical vertical	5121+96 5122+68	156+119 156+141	2,628.5	801.2	112.2	34.2	48.0	1219.2	0.3	227,092 fb	113.5 tor
curve	vertical	5122+68	156+141	2,701.9	823.5 845.9	127.8	38.9	48.0	1219.2	0.3	231,807 lb	115.9 tor
straight	resulted)	5123+75	156+174	2,775.2	857.1	144.8 153.7	44.1 46.8	48.0	1219.2	0.3	236,438 lb	118.2 lor
straight		5124+10	156+185	2,811.9	868.3	162.5	46.8	48.0 48.0	1219.2	0.3	239,451 lb	119.7 tor
straight		5124+46	156+195	2,885.3	879.5	171.4	52.2	48.0	1219.2 1219.2	0.3	242,464 lb	121.2 for
straight		5124+81	156+206	2.922.0	890.6	180.3	55.0	48.0	1219.2	0.3	245,476 lb 248,489 lb	122.7 tor
straight		5125+17	156+217	2,958.7	901.8	189.2	57.7	48.0	1219.2	0.3	248,489 Ib	124.2 tor
straight		5125+53	156+228	2,995.5	913.0	198.1	60.4	48.0	1219.2	0.3	254,515 lb	125.8 tor 127.3 tor
*traight		5125+88	156+239	3,032.2	924.2	207.0	63.1	48.0	1219.2	0.3	257,527 lb	128.8 tor
aight		5126+24	156+250	3,068.9	935.4	215.8	65.8	48.0	1219.2	0.3	280,540 lb	130.3 tor
aight		5126+60	156+261	3,105.6	946.6	224.7	68.5	48.0	1219.2	0.3	263,553 lb	131.8 tor
raight		5126+95	156+271	3,142.3	957.8	233.6	71.2	48.0	1219.2	0.3	266,566 lb	133.3 tor
straight		5127+31	156+282	3,179.1	969.0	242.5	73.9	48.0	1219.2	0.3	269,578 lb	134.8 ton
straight straight		5127+66 5128+02	156+293 156+304	3,215.8	980.2	251.4	76.6	48.0	1219.2	0.3	272,591 lb	136.3 ton
straight straight				3,252.5	991.4	260.2	79.3	48.0	1219.2	0.3	275,604 lb	137.8 lon
straight		5128+38 5128+73	156+315 156+326	3,289.2	1,002.6	269.1	82.0	48.0	1219.2	0.3	278,617 lb	139.3 lon
DD Rig Location		5129+09	156+326	3,325.9	1,013.8	278.0 286.9	84.7 87.4	48.0	1219.2 1219.2	0.3	281,629 lb	140.8 lon

				H	HDD Inst	tallation	Stress A	nalysis				
	nsile (Axial			ending Stres			Hoop Stres		Combined Tensile and Bending Factor	CombinedTe nsile and Bending <1.0	Combined Tensile, Bending and Hoop Factor	Combined Tensile, Bending and Hoop <1.0
psi	MPa	% SMYS	psi	MPa	% SMYS	psi	MPa	%SMYS				
1,178	8.12	1.68%	0	0.00	0.00%	78.2	0.00	0.00%	0.02	Yes	0.00	Yes
1,266	8.73	1.81%	0	0.00	0.00%	156.4	1.08	0.11%	0.02	Yes	0.00	Yes
1,322	9.11	1.89%	0	0.00	0.00%	61.0	0.42	0.09%	0.02	Yes	0.00	Yes Yes
1,378	9.50	1.97%	0	0.00	0.00%	139.2	0.96	0.20%	0.02	Yes	0.00	Yes
1,434	9.89	2.05%	0	0.00	0.00%	217.4	1.50	0.31%	0.03	Yes	0.00	Yes
1,491	10.28	2.13%	0	0.00	0.00%	295.6	2.04	0.42%	0.03	Yes	0.01	Yes
1,547	10.67	2.21%	0	0.00	0.00%	373.8	2.58	0.53%	0.03	Yes	0.01	Yes
1,603	11.05	2.29%	0	0.00	0.00%	452.0	3.12	0.65%	0.03	Yes	0.01	Yes
1,659	11.44	2.37%	0	0.00	0.00%	530.2	3.66	0.76%	0.03	Yes	0.01	Yes
1,772	12.22	2.45%	0	0.00	0.00%	608.4 686.6	4.19	0.87%	0.03	Yes	0.01	Yes
1,828	12.60	2.61%	0	0.00	0.00%	764.8	5.27	0.98%	0.03	Yes	0.01	Yes Yes
2,390	16.48	3.41%	12,167	83.89	17.38%	807.4	5.57	1.15%	0.03	Yes	0.10	Yes
2,431	16.76	3.47%	12,167	83.89	17.38%	847.3	5.84	1.21%	0.32	Yes	0.10	Yes
2,244	15.47	3.21%	12,167	83.89	17.38%	884.5	6.10	1.26%	0.31	Yes	0.10	Yes
2,155	14.86	3.08%	12,167	83.89	17.38%	918.9	6.34	1.31%	0.31	Yes	0.10	Yes
2,105	14.51	3.01% 2.96%	12,167	83.89 83.89	17.38%	950.6 979.6	6.55	1.36%	0.31	Yes	0.10	Yes
2,075	14.18	2.94%	12,167	83.89	17,38%	1,005.8	6.75	1.40%	0.31	Yes Yes	0.10	Yes
2.046	14.11	2.92%	12,167	83.89	17.38%	1,029.3	7.10	1,47%	0.31	Yes	0.11	Yes Yes
2,040	14.07	2.91%	12,167	83.89	17.38%	1,050.1	7.24	1.50%	0.31	Yes	0.11	Yes
2,039	14.06	2.91%	12,167	83.89	17.38%	1,068.0	7.36	1.53%	0.31	Yes	0.11	Yes
2,040	14.06	2.91%	12,167	83.89	17.38%	1,083.2	7.47	1.55%	0.31	Yes	0.11	Yes
2,043	14.09	2.92%	12,167 12,167	83.89	17.38%	1,095.7	7.55	1.57%	0.31	Yes	0.11	Yes
2,104	14.28	3.01%	12,167	83.89 83.89	17.38% 17.38%	1,105.4	7.62	1.58%	0.31	Yes Yes	0.11	Yes Yes
2,137	14.73	3.05%	12,167	83.89	17.38%	1,116.5	7.70	1,59%	0.31	Yes	0.11	Yes
2,168	14.95	3.10%	12,167	83.89	17.38%	1,117.8	7.71	1.60%	0.31	Yes	0.11	Yes
2,196	15.14	3.14%	0	0.00	0.00%	1,117.8	7.71	1.60%	0.04	Yes	0.03	Yes
2,224	15.33	3.18%	0	0.00	0.00%	1,117.8	7 71	1.60%	0.04	Yes	0.03	Yes
2,280	15.72	3.22%	0	0.00	0.00%	1,117.8	7.71	1.60%	0.04	Yes	0.03	Yes
2,654	18.30	3,79%	12,167	83.89	17.38%	1.114.5	7.68	1.59%	0.32	Yes	0.03	Yes
2,705	18 65	3.86%	12,167	83.89	17,38%	1,104.4	7.61	1.58%	0.32	Yes	0.12	Yes
2,604	17.95	3.72%	12,167	83.89	17.38%	1,087.7	7.50	1.55%	0.32	Yes	0.12	Yes
2,567	17.70	3.67%	12,167	83.89	17.38%	1,064.3	7.34	1.52%	0.32	Yes	0.11	Yes
2,557 2,561	17.63	3.65%	12,167 12,167	83.89 83.89	17.38%	1,034.2 997.4	7.13	1,48%	0.32	Yes	0.11	Yes
2,574	17.75	3.68%	12,167	83.89	17.38%	954.0	6.58	1.42%	0.32	Yes	0.11	Yes
2,593	17.88	3,70%	12,167	83.89	17.38%	903.9	6.23	1.29%	0.32	Yes	0.11	Yes
2,635	18.17	3.76%	12,167	83.89	17.38%	847.3	5.84	1.21%	0.32	Yes	0.10	Yes
2,692	18.56	3.85%	12,167	83.89	17.38%	784.0	5.41	1.12%	0.32	Yes	0.10	Yes
2,748	18.95	3.93%	12,167	83.89 83.89	17.38%	714.2 637.9	4.92	1.02%	0.32	Yes	0.10	Yes
2,839	19.57	4.06%	0	0.00	0.00%	598.0	4.12	0.85%	0.32	Yes	0.10	Yes Yes
2,874	19.82	4.11%	0	0.00	0.00%	558.2	3.85	0.80%	0.05	Yes	0.01	Yes
2,910	20.06	4.16%	0	0.00	0.00%	518.3	3.57	0.74%	0.05	Yes	0.01	Yes
2,946	20.31	4.21%	0	0.00	0.00%	478.4	3.30	0.68%	0.05	Yes	0.01	Yes
2,981	20.56	4.26% 4.31%	0	0.00	0.00%	438.6	3.02	0.63%	0.05	Yes	0.01	Yes
3,017	20.80	4.31%	0	0.00	0.00%	398.7 358.8	2.75	0.57%	0.05	Yes	0.01	Yes
3,089	21.05	4,41%	0	0.00	0.00%	318.9	2.47	0.51%	0.05	Yes Yes	0.01	Yes Yes
3,124	21.54	4.46%	0	0.00	0.00%	279.1	1.92	0.40%	0.06	Yes	0.01	Yes
3,160	21.79	4.51%	0	0.00	0.00%	239.2	1.65	0.34%	0.06	Yes	0.01	Yes
3,196	22.03	4.57%	0	0.00	0.00%	199.3	1.37	0.28%	0.06	Yes	0.01	Yes
3,231	22.28	4.62%	0	0.00	0.00%	159.5	1.10	0.23%	0.06	Yes	0.01	Yes
3,303	22.53	4.67%	0	0.00	0.00%	119.6 79.7	0.82	0.17%	0.06	Yes	0.01	Yes
3,339	23.02	4.72%	0	0.00	0.00%	39.9	0.55	0.11%	0.06	Yes Yes	0.01	Yes
3,374	23.26	4.82%	0	0.00	0.00%	0.0	0.00	0.00%	0.06	Yes	0.00	Yes
				NOTE: Hoor	eleges teles		phraina f-		4.1.1	700	0.00	1 100

| TOTAL PULL LOADS | Values | 284,642 | b | 142,3 | tons |

					1/2000000000000000000000000000000000000		h-) p-p	. ne adojeno	y control and mai mater ma	i badyancy considi
Te	nsile (Axial)) Stress	В	ending Stres	s	1000	Hoop Stres	S	Combined Tensile and	Combined Tensile, Bending
psi	MPa	% SMYS	psi	MPa	% SMYS	psi	MPa	% SMYS	Bending Factor	and Hoop Factor
3,374	23.3	4.82%	12,167	83.9	17,38%	1,118	7.7	1.50%	0.32	0.12

0' 0-t 0: t	36	lin
Pipe Outer Diameter	914.4	
Pipe Wall Thickness	0.762	in
ripe wall inickness	19.3548	mm
DR	47.2	
Pipe Weight (in air)	287.04	lbs/ft
Pipe Weight (in air)	428.06	kg/m
Weight of Water in pipe	404.5	lbs/ft
vveight of vvalor in pipe	603.26	kg/m
Net Buoyant Weight of pipe	57.1	lbs/ft
Het Buoyant Weight of pipe	85.14	kg/m
Young's Modulus of Elasticity	2.92E+07	psi
roung's Modulus of Elasticity	201327	MPa
36.110	70,000	psi
Yield Strength	482.6	
Poisson Ratio	0.3	
Drill Pipe Diameter	6.625	in
Onli Pipe Diameter	168,275	mm
Minimum Radius of Curvature	2,500	ft
Interindent Radius di Curvature	762	m
	3.542.953	(b
Ultimate Safe Pull Load	15,760	kN
Maximum Calculated Pull Load	284,642	lb
	1,266	kN
Factor of Safety	12.4	
Start-Up Load Factor	2	
Maximum Calculated Start-Up Pipe Pull	569,285	lb
Load	2,532	
Factor of Safety	6.2	_

Mud Weight	12 ppg of drill fluid and solids (typically 9.5 to 11 lb/gal)
	1,439 Specific Gravity
Friction Coeff. (GS or rollers)	0.1 rollers typically 0.10 to 0.30 (along ground surface is higher range)
Yield Point	19.5 lb/100ft2 (Based on HDD experience from previous installations)
Tidd Polist	93.366 dyne/cm ²
Plastic Viscosity	13 cP (Based on HDD experience from previous installations)
Drilling mud pumping rate	600 GPM (typically 200 to 300 gpm for soil or 400 to 800 gpm bedrock)
Others grand pumping rate	2.271 m³/min
Drilling mud pumping rate	1129 GPM (equivalent mud rate accounting for slurry displaced by product pipe installation)
British grade pumping race	4.273 m³/min
Pipe Puliback Rate	10 feet/min (Based on HDD experience)
ripe ruilback nate	3.05/m/min

Appendix D

Hydraulic Fracture Evaluation

Calculated by:	M, Lockwood	
Checked by:	G. Duyvestyn	
Date:	4/25/2019	
Project No:	353754	

PROJECT: PennEast Pipeline Project

CROSSING LOCATION: Wickecheoke Creek

Reference: 1. Latore, C.A., Wakeley, L.D., and Conroy, P.J., Guidelines for Installation of Utilities Beneath Corps of Engineers Levees using Horizontal Directional Drilling, June 2002, ERDC/GSL YR-02-9
2. HDD Consortium, Horizontal Directional Drilling Good Practices Guidelines, Third Edition, North American Society of Trenchless Technology, 2008.

Geotechnical Inputs

Soll Properties	Soll Type 1	Soll Type 2	Soll Type 3	Soll Type 4	Sall Type 5
G, soil cohesion (psf)	1000	0	4500	THE RESIDENCE OF THE PERSON NAMED IN	Carry St.
G, soll cohesion (N/m ² or Pa)	47,880	0	215,461	0	0
4, soil internal friction angle (deg)	0.0	22.0	6.0	THE PERSON	0.0
soil internal friction angle (rad)	0.00	0.38	0.10	0.0	0.0
Equivalent 'SPT Blow Count N60 (blows per 12 inch)	8	STATE STATE	BURNET BURNET	SPECIFICATION OF THE PERSON OF	Contract of the Party of the Pa
E , Young's Modulus based on blow count (lb/ft²)	240,000	0	0	0	0
E , Young's Modulus (kPa)	11,500	21,500	36,000	Marian et dipor	法が心下が知る
E , Young's Modulus (lb/ft²)	240,182	449,037	751,875	0	0
v , Poisson's ratio	0.30	0.30	0.30	J-189-196-65	Mark Out I
G, soll shear modulus (ksf)	92	173	289	0	0
G, soil shear modulus (kPa)	4,423	8,259	13,846	0	0
G , soil shear modulus (Pa)	4,423,077	8,269,231	13,846,154	0	0
y, soil total unit weight (pcf) below water table	120	135	150	COMP 28-63	Territoria del
y, soil total unit weight (kN/m²) below water table	18.9	21.2	23.6	0.0	0.0
y, soil total unit weight (pcf) above water table	115	130	145	STATE OF STREET	William Co.
y, soil total unit weight (kN/m ³) above water table	18.1	20.4	22.8	0.0	0.0
Top Depth Soil Type encountered (feet)	GS	-10	-30	20年7年5年1	A-32-5-5-5-5
Top Depth Soil Type encountered (metre)	GS	-3.0	-9.1		15-35-57.71
Bottom Depth Soil Type encountered (feet)	-10	-30		CALVA STATE	A CONTRACTOR
Better Dooth Coll Type engagetered (make)	2.0	0.1			11.50

HDD Installation Inputs

Drill and Intersect Used	no	
Target Drill and Intersect Location		9
	0+000	
Drill Rig setup on Pipe Side (Single Rig Option Only). For Drill and Intersect, this must be "no"	no	
Drill Rig #1 Elevation	286,9	feet
Drill reig #1 Elevation	87.4	metre
Drill Rig #2 Elevation (Pipe Entry Location)	N/A	foot
Drill Fig #2 Elevation (Pipe Entry Location)	NA	metre
Recommended Allowable Pressure Factor	2.00	Factor applied
	3,309.0	feet
Total Horizontal Installation Length	1,008.6	metre
True Installation Length	3,362.7	feet
True installation Cengin	1,024.9	metre
Pilot Born Diameter	12.250	inch
Prior Bore Diameter	311.15	mm
Drill Pipe Dlameter	6.625	Inch
Drill Pipe Diameter	168.28	mm
Yield Point	19.5	lb/10082
Plastic Viscosity	13	c₽
Orilling Fluid Pumping Rate	600	gat/min
Disting read reinping read	2.27	m³/mln
Calculated Drilling Fluid Velocity	2.306	Nsec
Concounter Chinning I have venocity	0.703	misec
The same and the s	0.015	psi per ft of bore
Pressure Required for Bore Slurry Flow	0.126	kPa per metre of bor
The second secon	0.548	psi per 30 ft drili pipe
taken minima arabah	10.5	ppg
Draing Fluid Mud Weight	78.5	8b/A
	1.26	specific gravity

Location	Bore Stationing	Drilled Longth wrt Drill Rig(s and Locations (True Bore Longth)		Ground Surface Elevation	Elevation	Depth of Cover	Soll Type	Theoretical Unfactored Drilling Fluid Pressure	Estimated Bore Fluid Pressure for Drilling Fluid Flow	Factor of Safety	Estimated Hydrostatic Fluid Pressure Within Bore	Factor of Safety	Estimated Bore Fluid Pressure for Drilling Fluid Flow and Hydrostatic Column	Factor of Safety	Press	Upper Drilling Fluid ure Limit	Factor of Safety	Total S Evalua	ation
Pipe Ext: Side	5129+09 156+337	feet metre		Toot metre 286.9 87.4	foot metro 271.9 443.0		Type 1	0.0 0.0	psi kPa 0.00 0.0	-	0.00 0.00	-	0.00 0.0	_	Factor	psi kPa 0.0 0.0	-	psi 0.0	0.0
Pipo Ezz. Side	5128+73 156+326			285.2 86.9	270.2 443.0		Type 2	29.1 201.0	0.7 4.6	43.43	4.8 33.4	6.02	5.5 38.0	5.28	2.00	17.8 123.0	3.23	6.5	45.0
	5128+38 156+315			281.4 85.8	268.4 443.0		Type 3	192.2 1325.0	1.3 9.3	143.15	9.7 66.8	19.83	11.0 76.1	17.42	7.50	36.7 253.3	3.33	12.8	86.4
	5128+02 156+304			278.0 84.7	263.0 443.0		Type 3	207.9 1433.5	2.0 13.9	103.25	14.5 100.2	14.30	16.5 114.1	12.56	6.50	47.7 328.6	2.88	18.5	127.7
	5127+66 156+293		251.4 76.6	274.1 83.6	259.1 443.0	22.8 6.9	Type 3	217.8 1501.5	2.7 18.5	81,11	19.4 133.6	11.24	22.1 152.1	9.87	6.00	55.1 386.5	2.54	23.7	163.5
	5127+31 156+282 5126+95 156+271			270.8 82.5 207.7 81.6	255.8 443.0 252.7 443.0	26.3 8.6 34.1 10.4	Type 3 Type 3	227.0 1565.4 235.8 1625.9	3.4 23.1 4.0 27.8	67,65 58.55	24.2 167.0 29.1 200.4	9.37	27.6 190.2 33.1 228.2	8.23 7.13	5.50 5.00	65.4 451.0 75.6 521.0	2.37	29.5	203.3
	5126+60 156+261			265.2 80.8	250.2 443.0	40.5 12.3	Type 3	245.1 1669.7	4.7 32.4	52.16	33.9 233.8	7.23	38.6 265.2	6.35	4.50	87.3 501.6	2.26	42.2	290.7
	5126+24 156+250			262.0 79.9	247.0 443.0	46.2 14.1	Тура 3	253.0 1744.7	5.4 37.0	47.12	38.8 267.2	6.53	44.1 304.3	5.73	4.00	99.3 584.9	2.25	48,1	331.7
	5125+88 156+239			258.2 78.7	243.2 443.0	51.2 15.6	Type 3	260.0 1792.6	6.0 41.7	43.04	43.6 300.6	5.98	49.6 342.3	5.24	3.50	112.4 775.0	2.26	53.4	367.9
	5125+53 156+228			258.1 78.1		58.0 17.7	Type 3	269.3 1856.7	6.7 45.3	40,12	48.4 334.0	5.56	55.2 380.3	4.88	3.00	130.1 896.8	2.36	60.5	416.9
	5125+17 156+217			252.5 77.0 249.1 75.9	237.5 443.0	63.3 19.3 68.8 21.0	Type 3	276.4 1906.0 283.6 1956.8	7.4 50.9 B.1 55.5	37.44 35.24	53.3 367.5 58.1 400.9	5.19 4.88	60.7 418.4 66.2 456.4	4.56	2.50 2.25	150.2 1.035.4 166.0 1.144.3		71.7	454.9 494.3
	5124+46 156+195			248.0 75.0	231.0 443.0	74.6 22.7	Type 3	291.6 2010.3	8.7 50.2	33.41	63.0 434.3	4.63	71.7 494.4	4.29	2.00	184.6 1.273.1	2.57	77.7	535.8
	5124+10 156+185			242.9 74.0	227.9 443.0	80.3 24.5	Type 3	299.2 2062.9	9.4 54.8	31,84	67.8 467.7	4,41	77.2 532.5	3.67	2.00	191.4 1,319.9		83.7	576.9
	5123+75 156+174	550.8 167.9		240.2 73.2		86.6 26.4	Type 3	307.5 2120.2	10.1 69.4	30.54	72.7 501.1	4.23	82.7 570.5	3.72	2.00	198.8 1,371.0	2.40	80.2	621.7
	5123+39 156+163			237.3 72.3		92.5 28.2	Type 3	315.4 2174.4	10.7 74.0	29.36	77.5 534.5	4.07	88.3 808.5	3,57	2.00	205.8 1,419.3	2.33	86.3	664.2
-	5122+68 156+141			231.3 70.5		103.5 31.5	Type 3	330.0 2275.1 342.9 2354.5	12.1 83.3 13.4 92.5	27.32	86.8 598,4 95.3 656.9	3.60	98.9 681.7 108.7 749.5	3.34	2.00	218.9 1,509.2		107.8	743.7
	5121+24 156+097			221.2 67.4		123.1 37.5	Type 3 Type 3	355.8 2453.2	14.8 101.8	24,11	103.0 709.9	3.46	117.7 811.7	3.10	2.00	230.5 1,589.2 242.0 1,668.5		118.0	817
	5120+52 156+075			217.0 66.1			Type 3	367.0 2530.1	16.1 111.0	22.79	109.8 757.4	3.34	125.9 868.4	2.91	2.00	252.0 1,737.3		137.0	94
	5119+79 156+053			212.3 64.7		138.0 42.1	Type 3	375.5 2588.6	17.4 120.2	21.53	115.9 799.3	3.24	133.4 919.6	2.82	2.00	259.6 1,789.8		143.7	990.
	5119+07 156+03			208.5 63.5	193.5 443.0		Type 3	383.1 2641.4	18.8 129.5	20.40	121.2 835.7	3.16	140.0 965.2	2.74	2.00	266.4 1,837.0		149.8	1,032.6
	5118+34 156+009			205.5 62.7			Type 3	390.0 2689.3	20.1 138.7	19.39	125.7 886.5	3.10	145.8 1005.2	2.68	2.00	272.7 1,880.0		155.3	1.070.6
	5117+61 155+987			201.5 61.4 198.7 60.0	186.5 443.0 181.7 443.0	151.7 46.2 152.2 46.4	Type 3 Type 3	393.5 2713.1	21.5 148.0 22.8 157.2	18.34	129.3 891,7 132.2 911.4	3.04 2.98	150.8 1039.7 155.0 1068.6	2.61	2.00	275.8 1,901.3 276.3 1,905.2	1.83	158.0	1,089.5
	5116+15 155+964			192.8 58.8	177.8 443.0	152.0 46.3	Type 3	393.9 2715.6	24.1 166.4	16.32	134.2 925.4	2.93	158.4 1091.8	2.54	2.00	276.1 1,903.6		158.3	1.092.9
	5115+41 155+920			187,1 57.0	172.1 443.0	148.6 45.3	Type 3	369.4 2684.7	25.5 175.7	15.28	135.4 933.8	2.88	160.9 1109.5	2.42	2.00	272.1 1,875.8	1.69	154.8	1.067.0
	5114+68 155+897						Type 3	383.5 2644.1	26.8 184.9	14.30	135.8 936.6	2.82	162.7 1121.5	2.35	2.00	265.8 1,839.5		150.1	1,034.9
	5114+34 155+88			180.2 54.9	165.2 443.0	142.3 43.4	Type 3	381.2 2628.2	27.4 189.2	13.89	135.8 936.6	2,81	163.3 1125.8		2.00	264.7 1,825.2		148.3	1,022.2
	5114+00 155+87			178.3 54.3	163.3 443.0		Type 3	378.7 2610.9	28.1 193.5	13.49	135.8 936.6	2.79	163.9 1130.1	2,31	2.00	262.5 1,809.7	1,60	146.3	1.008.5
-	5113+66 155+856			176.2 53.7 174.2 53.1			Type 3	377.0 2599.4 374.0 2578.3	28.7 197.8 29.3 202.1	13,14	135.8 936.6 135.8 936.6	2.78	164.5 1134.4 165.1 1138.7	2.29	2.00	260.6 1,795.6 258.0 1,778.8		144.2	993.9 979.4
	5112+85 155+84			171.5 52.3			Туре 3	369.4 2547.0	30.2 208.0	12.25	135.7 935.4	2.72	165.8 1143.4	2.23	2.00	254.1 1.752.3		138.9	957.5
	5112+38 155+82			169.5 51.7	156.0 443.0	130.4 39.8	Type 3	365.3 2518.3	31.0 213.9	11.77	135.2 932.0	2.70	166.2 1145.9	2.20	2.00	250.6 1,727.6	1.51	135.9	936.6
	5111+91 155+613			157.6 48.0	158.0 443.0		Type 3	345.2 2380.1	31.9 219.9	10.82	134.3 928.2	2,57	166.2 1146.0	2.08	2.00	233.5 1,610.3	1.41	121.9	840.4
	5111+44 155+79				156.0 443.0	111.5 34.0	Type 3	337.3 2325.5	32.8 225.8	10.30	133.2 918.1	2.53	165.9 1143.9	2.03	2.00	225.7 1,563.2	1.37	118.2	800.9
	5110+97 155+78						Туре 3	338.1 2331.3 335.4 2312.3	33.6 231.8 34.5 237.7		131.6 907.6 129.6 894.9	2.57	165.3 1139.4 164.3 1132.6	2.05	2.00	227.2 1,566.8	1.38	115.4	802.3
	5110+50 155+770			158.4 48.3			Type 3 Type 3	328.2 2263.0	35.3 243.6	9.73	129.8 894.9 127.6 879.8	2.58	164.3 1132.6 162.9 1123.5	2.04	2.00	224.7 1,549.2 218.4 1,505.8	1.37	114.0	786.1 748.6
	5109+56 155+74				143.1 443.0		Type 3	326.0 2247.8	36.2 249.6	9.01	125.1 862.4	2.61	161.3 1112.0	2.02	2.00	215.4 1,484.9	1.34	104.7	721.9
	5109+09 155+72	7 2,027.3 617.5	62.8 19.1				Туре 3	319.0 2199.4	37.1 255.5	8.51	122.2 842.8	2.61	159.3 1098.3	2.00	2.00	209.1 1,441.6	1,31	99.2	583.9
	5108+62 155+71						Type 3	311.2 2145.9		8.21	119.0 820.8	2.61	157.0 1082.2		2.00	202.2 1,393.9		93.1	541.9
	5106+15 155+69						Type 3	303.5 2092.6	38.8 267.4	7.83	115.5 796.5	2.63	154.3 1063.9	1.97	2.00	195.3 1,346.4		87.0	600.1
	5107+69 155+68 5107+22 155+67						Type 3	295.8 2039.8 293.9 2026.2	39.6 273.3 40.5 279.3	7.46	111.7 769.9 107.5 741.1	2.65	151.3 1043.3 148.0 1020.3	1.96	2.00	188.4 1,299.3 186.7 1,287.2	1.25	81.0 79.5	558.8 548.2
	5106+76 155+65						Type 3	306.2 2111,4	41.4 285.2	7,40	103.0 709.9	2,97	144,3 995,1	2.12	2.00	197.7 1.363.1	1.37	89.2	614.8
	5106+30 155+64			206.3 62.9			Type 3	324.5 2237.0	42.2 291.2	7.65	98.1 676.5	3.31	140.3 967.6	2.31	2.00	214.0 1,475.2	1.52	103.5	713.4
	5105+84 155+62						Type 3	346.3 2387.4	43.1 297.1	8.04	92.9 640.8	3.73	136.0 937.9	2.55	2.00	233.5 1,609.6	1.72	120.6	831.8
	5105+02 155+60			253,4 77,2			Type 3	351.1 2420.7	44.6 307.7	7.87	63.4 575.3	4.21	128.1 862.9	2.74	2.00	237.8 1,639.4		124.5	858.1
	5104+20 155+57 5103+38 155+55					109.1 33.3 99.4 30.3	Type 3	337.4 2326.2 324.5 2237.3	45.2 318.2 47.7 326.8	7.31 6.80	73.9 509.7 64.4 444.2	4.56 5.04	120.1 828.0 112.1 773.0	2.81	2.00	225.5 1,554.8 214.0 1,475.5	1.88	103.5	783.6 713.6
	5103+38 155+55						Type 3	307.4 2119.4	49.2 339.3	6.25	54.9 378.7	5.60	104.1 718.1	2.89	2.00	198.7 1,370.3		90.1	621.1
20 950	5101+74 155+50						Type 3	289.3 1994.5	50.7 349.9	5.70	45.4 313.2	6.37	96.2 663.1	3.01	2.00	182.6 1,259.0		75.9	523.5
	5100+92 155+47	8 2,859.9 871.	7 221.0 67.4	281.1 85.7	266.1 443.0	60.0 18.3	Туре 3	272.0 1875.2	52.3 360.5	5.20	35.9 247.7	7.57	88.2 608.1	3.08	2.10	162.3 1,118.8	1.84	62.5	431.1
THE RESERVE		3 2,943.7 897.		285.6 87.4			Type 3	255.8 1763.4		4.75	26.4 182.2	9.68	80.2 553.2	3.19	2.40	135.8 938.5		50.1	345.8
	5099+28 155+42			293.9 89.6 303.0 92.4			Type 3	241.6 1655.9 116.9 806.0	55.3 381.6 56.9 392.1	4,37 2,06	15.9 116,7 7.4 51.1	14,28	72.3 498.2 64.3 443.3	3.34 1.62	3.00	107.0 737.5 71.9 495.5	1.48	39.6	273.3
	5098+46 155+40			303.0 92.4			Type 2	89.4 616.7	58.4 402.7	1,53	-2.1 -14.4	-42,91	56.3 388.3	1,59	2.00	71.9 495.5 53.8 370.7	1,12	26.8	185.0
	5096+82 155+35						Type 1	43.2 297.9		0.72	-11.6 -79.9	-3.73	46.4 333.4	0.89	3.50	18.7 128.7	2.314703	8.8	61.0
Pipe Entry Side	5096+00 155+32				310.6 443.0	0.0 0.0	Type 1	0.0 0.0	61.5 423.8	-	-21.1 -145.4	1	40.4 278.4	-	2.00	0.0 0.0		0.0	0.0

		R	

MOTT MACDONALD

HDD Design Report Brookville Hollow Road HDD Crossing

PennEast Pipeline Project

July 22, 2019

PennEast Pipeline Project 353754-MM-EN-CO-103 RevA